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Abstract. Reading landscapes and developing calibration-
free runoff generation models that adequately reflect land
surface heterogeneities remains the focus of much hydro-
logical research. In this study, we report a novel and sim-
ple topography-driven runoff generation parameterization
– the HAND-based Storage Capacity curve (HSC), which
uses a topographic index (HAND, Height Above the Near-
est Drainage) to identify hydrological similarity and the ex-
tent of saturated areas in catchments. The HSC can be used
as a module in any conceptual rainfall–runoff model. Fur-
ther, coupling the HSC parameterization with the mass curve
technique (MCT) to estimate root zone storage capacity
(SuMax), we developed a calibration-free runoff generation
module, HSC-MCT. The runoff generation modules of HBV
and TOPMODEL were used for comparison purposes. The
performance of these two modules (HSC and HSC-MCT)
was first checked against the data-rich Bruntland Burn (BB)
catchment in Scotland, which has a long time series of field-
mapped saturation area extent. We found that HSC, HBV and
TOPMODEL all perform well to reproduce the hydrograph,
but the HSC module performs better in reproducing satu-
rated area variation, in terms of correlation coefficient and

spatial pattern. The HSC and HSC-MCT modules were sub-
sequently tested for 323 MOPEX catchments in the US, with
diverse climate, soil, vegetation and geological characteris-
tics. In comparison with HBV and TOPMODEL, the HSC
performs better in both calibration and validation, particu-
larly in the catchments with gentle topography, less forest
cover, and arid climate. Despite having no calibrated parame-
ters, the HSC-MCT module performed comparably well with
calibrated modules, highlighting the robustness of the HSC
parameterization to describe the spatial distribution of the
root zone storage capacity and the efficiency of the MCT
method to estimate SuMax. This novel and calibration-free
runoff generation module helps to improve the prediction in
ungauged basins and has great potential to be generalized at
the global scale.

1 Introduction

Determining the volume and timing of runoff generation
from rainfall inputs remains a central challenge in rainfall–
runoff modeling (Beven, 2012; McDonnell, 2013). Creat-
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ing a simple, calibration-free, but robust runoff generation
module has been, and continues to be, an essential pursuit
of hydrological modelers. Although we have made tremen-
dous advances in enhancing our ability in prediction in un-
gauged basins (PUB) (Sivapalan et al., 2003; Blöschl et al.,
2013; Hrachowitz et al., 2013), it is not uncommon that mod-
els become increasingly complicated in order to capture the
details of hydrological processes shown by empirical stud-
ies (McDonnell, 2007; Sivapalan, 2009; Yu et al., 2014).
More detailed process conceptualization normally demands
higher data requirements than our standard climatological
and hydrological networks can provide, leading to more cal-
ibrated parameters and a probable increase in model uncer-
tainty (Sivapalan, 2009).

Hydrological connectivity is a key characteristic of catch-
ment functioning, controlling runoff generation. It is a prop-
erty emerging at larger scales, describing the temporal dy-
namics of how spatially heterogeneous storage thresholds in
different parts of catchments are exceeded to contribute to
storm runoff generation and how they are thus “connected
to the stream” (e.g., Zehe and Blöschl, 2004; Bracken and
Croke, 2007; Zehe and Sivapalan, 2009; Ali et al., 2014;
Blume and van Meerveld, 2015). Connectivity is controlled
by a multitude of factors (Ali and Roy, 2010), including but
not limited to surface (e.g., Jencso et al., 2009) and subsur-
face topography (e.g., Tromp-van Meerveld and McDonnell,
2006), soils (including preferential flow networks; e.g., Zehe
et al., 2006; Weiler and McDonnell, 2007), land cover (e.g.,
Imeson and Prinsen, 2004; Jencso and McGlynn, 2011), and
the wetness state of the system (e.g., Detty and McGuire,
2010; Penna et al., 2011; McMillan et al., 2014; Nippgen et
al., 2015).

In detailed distributed hydrological bottom-up models,
connectivity emerges from the interplay of topography, soil
type, and water table depth. For example, TOPMODEL
(Beven and Kirkby, 1979; Beven and Freer, 2001) uses the
topographic wetness index (TWI) to distinguish hydrologic
similarity; and SHE (Abbott et al., 1986) and tRIBS (Ivanov
et al., 2004; Vivoni et al., 2005) use partial differential equa-
tions to describe the water movement based on pressure gra-
dients obtained by topography; and the representative el-
ementary watershed (REW) approach divides catchments
into a number of REWs to build balance and constitutive
equations for hydrological simulation (Reggiani et al., 1999;
Zhang and Savenije, 2005; Tian et al., 2008). As the rele-
vant model parameters such as local topographic slope and
hydraulic conductivity can, in spite of several unresolved is-
sues for example relating to the differences in the observation
and modeling scales (e.g., Beven, 1989; Zehe et al., 2014), be
obtained from direct observations, they could in principle be
applied without calibration.

Zooming out to the macro-scale, top-down models, in con-
trast, are based on emergent functional relationships that
integrate system-internal heterogeneity (Sivapalan, 2005).
These functional relationships require parameters that are ef-

fective on the modeling scale and that can largely not be
directly determined with small-scale field observations (cf.
Beven, 1995) and thus traditionally determined by calibra-
tion. However, frequently the number of observed variables
for model calibration is, if available at all, limited to time
series of streamflow. The absence of more variables to con-
strain models results in such models being ill-posed inverse
problems. Equifinality in parameterization and in the choice
of parameters then results in considerable model uncertainty
(e.g., Beven, 1993, 2006). To limit this problem and to also
allow predictions in the vast majority of ungauged catch-
ments, it is therefore desirable to find ways to directly infer
effective model parameters at the modeling scale from read-
ily available data (Hrachowitz et al., 2013).

The component that is central for establishing connectivity
in most top-down models is the soil moisture routine. Briefly,
it controls the dynamics of water storage and release in the
unsaturated root zone and partitions water into evaporative
fluxes, groundwater recharge, and fast lateral storm flow gen-
erating runoff (Gao et al., 2018a; Shao et al., 2018), the lat-
ter of which is critical from the aspect of connectivity. In the
majority of regions, Hortonian overland flow (HOF, i.e., infil-
tration excess overland flow) is of minor importance (Dunne
and Black, 1970; Sklash and Farvolden, 1979; Beven, 2004;
Burt and McDonnell, 2015), even in arid regions where often
most locally generated HOF is re-infiltrated while flowing
on hillslopes (Liu et al., 2012; Zhao et al., 2019) and never
reaches the stream channel network. Thus the term saturation
excess flow (SEF) can represent, depending on the model and
the area of application, different processes, such as saturation
overland flow, preferential flow, flow through shallow, high-
permeability soil layers, or combinations thereof. The inter-
play between water volumes that are stored and those that
are released laterally to the stream via fast, connected flow
paths (“connectivity”) is in most top-down models described
by functions between water stored in the unsaturated root
zone (“soil moisture”) and the areal proportion of heteroge-
neous, local storage thresholds that are exceeded and thus
“connected” (Zhao et al., 1980). In other words, in those parts
of a catchment where the storage threshold is exceeded it will
generate lateral flows, and can alternatively be interpreted as
a runoff coefficient (e.g., Ponce and Hawkins, 1996; Perrin
and Andreassian, 2001; Fenicia et al., 2007; Bergström and
Lindström, 2015). Thus the idea goes back to the variable
contributing area concept, assuming that only partial areas
of a catchment, where soils are saturated and thus storage
thresholds are exceeded, contribute to runoff (Hewlett, 1961;
Dunne and Black, 1970; Hewlett and Troendle, 1975). Al-
though originally developed for catchments dominated by
saturation overland flow, the extension of the concept to sub-
surface connectivity, illustrating that surface and subsurface
connectivity are “two sides of the same coin” (McDonnell,
2013), proved highly valuable for models such as Xinan-
jiang (Zhao et al., 1980), HBV (Bergström and Forsman,
1973; Bergström and Lindström, 2015), SCS-CN (Ponce and
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Hawkins, 1996; Bartlett et al., 2016), FLEX (Fenicia et al.,
2008), and GR4J (Perrin and Andreassian et al., 2001).

Among these models, connectivity is formulated in a gen-
eral form as CR = f (SU(t), SuMax, β), where CR is the
runoff coefficient; i.e., the proportion of the catchment gen-
erating runoff, SU(t), is the catchment water content in the
unsaturated root zone at any time t , SuMax is a parameter rep-
resenting the total storage capacity in the unsaturated root
zone, and β is a shape parameter, representing the spatial
distribution of heterogeneous storage capacities in the un-
saturated root zone. The parameters of these functions are
typically calibrated. In spite of being the core component of
soil moisture routines in many top-down models, little ef-
fort was previously invested to find ways to determine the
parameters at the catchment scale directly from available
data. An important step towards understanding and quan-
tifying connectivity patterns directly based on observations
was recently achieved by intensive experimental work in
the Tenderfoot Creek catchments in Montana, US. In their
work, Jencso et al. (2009) were able to show that connec-
tivity of individual hillslopes in their headwater catchments
is highly related to their respective upslope accumulated ar-
eas. Using this close relationship, Smith et al. (2013) suc-
cessfully developed a simple top-down model with very lim-
ited need for calibration, emphasizing the value of “enforcing
field-based limits on model parameters” (Smith et al., 2016).
Based on hydrological landscape analysis, the FLEX-Topo
model (Savenije, 2010) can dramatically reduce the need for
calibration (Gharari et al., 2014), and holds considerable po-
tential for spatial model transferability without the need for
parameter re-calibration (Gao et al., 2014a; H. Gao et al.,
2016). In a recent development, several studies suggest that
SuMax can be robustly and directly inferred from long-term
water balance data by the mass curve technique (MCT) (Gao
et al., 2014a; de Boer-Euser et al., 2016; Nijzink et al., 2016).
The MCT is an engineering method for reservoir design, in
which the reservoir size is estimated as a function of accu-
mulated inflow and human water demand. The MCT treats
the root zone as a reservoir, and estimates catchment-scale
SuMax from measurable hydrometeorological data, without
the need for further calibration. This leaves shape parame-
ter β as the only free calibration parameter for soil mois-
ture routines of that form. Topography is often the dominant
driver of water movement caused by prevailing hydraulic
gradients. More crucially, topography usually provides an in-
tegrating indicator for hydrological behavior, since topogra-
phy is usually closely related to other landscape elements,
such as soil vegetation climate and even geology (Seibert et
al., 2007; Savenije, 2010; Rempe and Dietrich, 2014; Gao et
al., 2014b; Maxwell and Condon, 2016; Gomes, 2016). The
Height Above the Nearest Drainage (HAND; Rennó et al.,
2008; Nobre et al., 2011; Gharari et al., 2011), which can
be computed from readily available digital elevation mod-
els (DEMs), could potentially provide first-order estimates
of groundwater depth, as there is some experimental evi-

dence that with increasing HAND, groundwater depths sim-
ilarly increase (e.g., Haria and Shand, 2004; Molenat et al.,
2005, 2008; Shand et al., 2005; Condon and Maxwell, 2015;
Maxwell and Condon, 2016). HAND can be interpreted as
a proxy of the hydraulic head and is thus potentially more
hydrologically informative than the topographic elevation
above sea level (Nobre et al., 2011). Compared with the TWI
in TOPMODEL, HAND is an explicit measure of a physi-
cal feature linking terrain to water-related potential energy
for local drainage (Nobre et al., 2011). More interestingly,
topographic structure emerges as a powerful force determin-
ing rooting depth under a given climate or within a biome
(Fig. 1), revealed by a global synthesis of 2200 root ob-
servations of >1000 species (Fan et al., 2017). This leads
us to think from an ecological perspective to use the topo-
graphic information as an indicator of root zone spatial dis-
tribution without calibrating the β, and coupling it with the
MCT method to estimate the SuMax, to eventually create a
calibration-free runoff generation module.

In this study we are therefore going to test the hypothe-
ses that (1) HAND can be linked to the spatial distribution
of storage capacities and therefore can be used to develop
a new runoff generation module (HAND-based Storage Ca-
pacity curve, i.e., HSC); (2) the distribution of storage ca-
pacities determined by HAND contains different information
than the topographic wetness index; (3) the HSC together
with water balance-based estimates of SuMax (MCT method)
allow the formulation of calibration-free parameterizations
of soil moisture routines in top-down models directly based
on observations. All these hypotheses will be tested firstly
in a small data-rich experimental catchment (the Bruntland
Burn catchment in Scotland), and then apply the model to a
wide range of larger MOPEX catchments (Model Parameter
Estimation Experiment).

This paper is structured as follows. In Sect. 2, we describe
two of our proposed modules, i.e., HSC and HSC-MCT, and
two benchmark models (HBV, TOPMODEL). This section
also includes the description of other modules (i.e., inter-
ception, evaporation, and routing) in rainfall–runoff model-
ing, and the methods for model evaluation, calibration, and
validation. Section 3 reviews the empirically based knowl-
edge of the Bruntland Burn catchment in Scotland and the
hydrometeorological and topographic datasets of MOPEX
catchments in the US for model comparison. Sections 4 and
5 present the model comparison results. Section 6 interprets
the relation between rainfall–runoff processes and topogra-
phy, catchment heterogeneity, and simple models, and the
implications and limitations of our proposed modules. The
conclusions are briefly reviewed in Sect. 7.

2 Methods

Based on our perceptual model that saturation excess flow
(SEF) is the dominant runoff generation mechanism in most
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Figure 1. The variation of plant rooting depths along a hillslope profile, showing the impact of HAND (Height Above the Nearest Drainage)
on rooting depth (Taken from Fan et al., 2017 by permission of PNAS).

cases, we developed the HAND-based Storage Capacity
curve (HSC) module. Subsequently, estimating the parame-
ter of root zone storage capacity (SuMax) by the MCT method
without calibration, the HSC-MCT was developed. In or-
der to assess the performance of our proposed modules, two
widely used runoff generation modules, i.e., the HBV power
function and TOPMODEL module, were set as benchmarks.
Other modules, i.e., interception, evaporation, and routing,
are kept with identical structure and parameterization for the
four rainfall–runoff models (HBV, TOPMODEL, HSC, and
HSC-MCT, whose names are from their runoff generation
modules), to independently diagnose the difference among
runoff generation modules (Clark et al., 2008, 2011).

2.1 Two benchmark modules

HBV power function

The HBV runoff generation module applies an empirical
power function to estimate the nonlinear relationship be-
tween the runoff coefficient and soil moisture (Bergström and
Forsman, 1973; Bergström and Lindström, 2015). The func-
tion is written as

As = (
Su

SuMax
)β , (1)

where As (–) represents the contributing area, which equals
the runoff coefficient of a certain rainfall event; Su (mm) rep-
resents the averaged root zone soil moisture; SuMax (mm) is
the averaged root zone storage capacity of the studied catch-
ment; β (–) is the parameter determining the shape of the
power function. The prior range of β can be from 0.1 to 5.
The Su and As have a linear relation, while β equals 1. And
the shape becomes convex while the β is less than 1, and
the shape turns to concave while the β is larger than 1. In
most situations, SuMax and β are two free parameters, cannot
be directly measured at the catchment scale, and need to be
calibrated based on observed rainfall–runoff data.

TOPMODEL module

The TOPMODEL assumes topographic information captures
the runoff generation heterogeneity at the catchment scale,
and the TWI is used as an index to identify rainfall–runoff
similarity (Beven and Kirkby, 1979; Sivapalan et al., 1997).
Areas with similar TWI values are regarded as possessing
equal runoff generation potential. More specifically, the ar-
eas with larger TWI values tend to be saturated first and con-
tribute to SEF; but the areas with lower TWI values need
more water to reach saturation and generate runoff. The
equations are written as follow:

Di =D+ SuMax(ITW− ITW_i), (2)

D = SuMax− Su, (3)

As =
∑

As_i; while Di < 0, (4)

whereDi (mm) is the local storage deficit below saturation at
a specific location (i); D (mm) is the averaged water deficit
of the entire catchment (Eq. 2), which equals (SuMax− Su),
as shown in Eq. (3). ITW_i is the local ITW value. ITW is the
averaged TWI of the entire catchment. Equation (2) means in
a certain soil moisture deficit condition for the entire catch-
ment (D), the soil moisture deficit of a specific location (Di),
is determined by the catchment topography (ITW and ITW_i),
and the root zone storage capacity (SuMax). Therefore, the
areas with Di less than zero are the saturated areas (As_i),
equal to the contributing areas. The integration of the As_i
areas (As), as presented in Eq. (4), is the runoff contributing
area, which equals the runoff coefficient of that rainfall event.

Besides continuous rainfall–runoff calculation, Eqs. (2)–
(4) also allow us to obtain the contributing area (As) from
the estimated relative soil moisture (Su/SuMax) and then map
it back to the original TWI map, which makes it possible
to test the simulated contributing area by field measurement.
It is worth mentioning that the TOPMODEL in this study
is a simplified version, and not identical to the original one,
which combines the saturated and unsaturated soil compo-
nents.
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2.2 HSC module

In the HSC module, we assume (1) primarily saturation ex-
cess flow as the dominant runoff generation mechanism;
(2) the local root zone storage capacity has a positive and lin-
ear relationship with HAND, from which we can derive the
spatial distribution of the root zone storage capacity; (3) rain-
fall firstly feeds local soil moisture deficit, and no runoff can
be generated before local soil moisture being saturated.

Figure 2 shows the perceptual HSC module, in which we
simplified the complicated 3-D topography of a real catch-
ment into a 2-D simplified hillslope. And then derive the dis-
tribution of root zone storage capacity, based on topographic
analysis and the second assumption as mentioned in the pre-
ceding paragraph. Figure 3 shows the approach to derive the
Su–As relation, which is detailed as follows.

I. Generate HAND map. The HAND map, which repre-
sents the relative vertical distance to the nearest river
channel, can be generated from a DEM (Gharari et al.,
2011). The stream initiation threshold area is a crucial
parameter, determining the perennial river channel net-
work (Montgomery and Dietrich, 1989; Hooshyar et al.,
2016), and significantly impacting the HAND values.
In this study, the start area was chosen as 40 ha for the
BB catchment to maintain a close correspondence to the
observed stream network. And for the MOPEX catch-
ments, the stream initiation area threshold is set as 500
grid cells (4.05 km2), which fills in the range of stream
initiation thresholds reported by others (e.g., Colombo
et al., 2007; Moussa, 2008, 2009). HAND maps were
then calculated from the elevation of each raster cell
above the nearest grid cell flagged as a stream cell fol-
lowing the flow direction (Gharari et al., 2011).

II. Generate normalized HAND distribution curve. Firstly,
sort the HAND values of grid cells in ascending or-
der. Secondly, divide the sorted HAND values evenly
into n bands (e.g., 20 bands in this study), to make
sure each HAND band has a similar area. The averaged
HAND value of each band is regarded as the HAND
value of that band. Thirdly, normalize the HAND bands,
and then plot the normalized HAND distribution curve
(Fig. 2b).

III. Distribute SuMax to each HAND band (SuMax_i). As as-
sumed, the normalized storage capacity of each HAND
band (SuMax_i) increases with HAND value (Fig. 2c).
Based on this assumption, the unsaturated root zone
storage capacity (SuMax) can be distributed to each
HAND band as SuMax_i (Fig. 3a). It is worth noting that
SuMax needs to be calibrated in the HSC module, but
free of calibration in the HSC-MCT module.

IV. Derive the Su−As curve. With the number of s saturated
HAND bands (Fig. 3a–c), the soil moisture (Su) can be

obtained by Eq. (5); and saturated area proportion (As)
can be obtained by Eq. (6).

Su =
1
n

[
s∑
i=1

SuMax_i + SuMax_s (n− s)

]
, (5)

As =
s
n
, (6)

where SuMax_s is the maximum SuMax_i of all the satu-
rated HAND bands. Subsequently, the As–Su curve can
be derived, and is shown in Fig. 3d.

The SEF mechanism assumes that runoff is only generated
from saturation areas; therefore, the proportion of the satura-
tion area is equal to the runoff coefficient of that rainfall–
runoff event. Based on the Su–As curve in Fig. 3d, gener-
ated runoff can be calculated from root zone moisture (Su).
The HSC module also allows us to map out the fluctuation
of saturated areas by the simulated catchment average soil
moisture. For each time step, the module can generate the
simulated root zone moisture for the entire basin (Su). Based
on the Su–As relationship (Fig. 3d), we can map Su back to
the saturated area proportion (As) and then visualize it in the
original HAND map. Based on this conceptual model, we
developed the computer program and created a procedural
module. The technical roadmap can be found in Fig. 4.

2.3 HSC-MCT module

The SuMax is an essential parameter in various hydrological
models (e.g., HBV, Xinanjiang, GR4J), which determines the
long-term partitioning of rainfall into infiltration and runoff.
Gao et al. (2014a) found that SuMax represents the adaption
of ecosystems to local climate. Ecosystems may design their
SuMax based on the precipitation pattern and their water de-
mand. The storage is neither too small to be mortal in dry
seasons, nor too large to consume excessive energy and nu-
trients. Based on this assumption, we can estimate the SuMax
without calibration, by the MCT method, from climatologi-
cal and vegetation information. More specifically, the aver-
age annual plant water demand in the dry season (SR) is de-
termined by the water balance and the vegetation phenology,
i.e., precipitation, runoff, and seasonal NDVI. Subsequently,
based on the annual SR, the Gumbel distribution (Gumbel,
1935), frequently used for estimating hydrological extremes,
was used to standardize the frequency of drought occurrence.
SR20yr , i.e., the root zone storage capacity required to over-
come a drought once in 20 years, is used as the proxy for
SuMax due to the assumption of a “cost” minimization strat-
egy of plants as we mentioned above (Milly, 1994), and the
fact that SR20yr has the best fit with SuMax. The SR20yr of the
MOPEX catchments can be found in the map of Gao et al.
(2014a).

Eventually, with the MCT approach to estimate SuMax and
the HSC curve to represent the root zone storage capacity
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Figure 2. The perceptual model of the HAND-based Storage Capacity curve (HSC) model. Panel (a) shows the representative hillslope
profile in nature, and the saturated area, unsaturated zone and saturated zone; panel (b) shows the relationship between HAND bands and
their corresponded area fraction; panel (c) shows the relationship between storage capacity-area fraction-soil moisture-saturated area, based
on the assumption that storage capacity linearly increases with HAND values.

Figure 3. The conceptual model of the HSC model. Panels (a), (b), and (c) illustrate the relationship between soil moisture (Su) and saturated
area (As) in different soil moisture conditions. In (d), 20 different Su–As conditions are plotted, which allow us to estimate As from Su.
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Figure 4. The procedures estimating runoff generation by the HSC
model and its two hypotheses.

spatial distribution, the HSC-MCT runoff generation mod-
ule is created, without free parameters. It is worth noting
that both the HSC-MCT and HSC modules are based on the
HAND-derived Su–As relation, and their distinction lays in
the methods to obtain SuMax. So far, the HBV power function
module has two free parameters (SuMax, β), while the TOP-
MODEL and the HSC both have one free parameter (SuMax).
Ultimately the HSC-MCT has no free parameter.

2.4 Interception, evaporation and routing modules

Except for the runoff generation module in the root zone
reservoir (SUR), we need to consider other processes, includ-
ing interception (SIR) before the SUR module, evaporation
from the SUR and the response routine (SFR and SSR) after
runoff generation from SUR (Fig. 5). Precipitation is firstly
intercepted by vegetation canopies. In this study, the inter-
ception was estimated by a threshold parameter (SiMax), set
to 2 mm (Gao et al., 2014a), below which all precipitation
will be intercepted and evaporated (Eq. 9) (de Groen and
Savenije, 2006). For the SUR reservoir, we can either use the
HBV beta-function (Eq. 12), the runoff generation module
of TOPMODEL (Eqs. 2–4) or the HSC module (Sect. 2.3)
to partition precipitation into generated runoff (Ru) and in-
filtration. The actual evaporation (Ea) from the soil equals
the potential evaporation (Ep), if Su/SuMax is above a thresh-
old (Ce), where Su is the soil moisture and SuMax is the
catchment-averaged storage capacity. And Ea linearly re-
duces with Su/SuMax, while Su/SuMax is below Ce (Eq. 13).
The Ep can be calculated by the Hargreaves equation (Har-
greaves and Samani, 1985), with maximum and minimum
daily temperature as input. The generated runoff (Ru) is fur-

Figure 5. Model structure and free parameters, involving four
runoff generation models (HBV-type, TOPMODEL, HSC, and
HSC-MCT). HBV-type has SuMax and beta two free parameters;
TOPMODEL and HSC models have SuMax as one free parameter;
and the HSC-MCT model does not have a free parameter. In order
to simplify calibration process and make fair comparison, the inter-
ception storage capacity (SiMax) was fixed as 2 mm.

ther split into two fluxes, including the flux to the fast re-
sponse reservoir (Rf) and the flux to the slow response reser-
voir (Rs), by a splitter (D) (Eq. 14). The delayed time from
rainfall peak to the flood peak is estimated by a convolution
delay function, with a delay time of TlagF (Eqs. 15, 16). Sub-
sequently, the fluxes into two different response reservoirs
(SFR and SSR) were released by two linear equations between
discharge and storage (Eqs. 18, 21), representing the fast re-
sponse flow and the slow response flow mainly from ground-
water reservoir. The two discharges (Qf and Qs) generated
the simulated streamflow (Qm). The model parameters are
shown in Table 1, while the equations are given in Table 2.
More detailed description of the model structure can be re-
ferred to Gao et al. (2014b, 2016). It is worth underlining that
the only difference among the benchmark HBV type, TOP-
MODEL type, HSC, and HSC-MCT models is their runoff
generation modules. Eventually, there are 7 free parameters
in HBV model, 6 in TOPMODEL and HSC model, and 5 in
the HSC-MCT model.

2.5 Model evaluation, calibration, validation, and
model comparison

Two objective functions were used to evaluate model perfor-
mance, since multi-objective evaluation is a more robust ap-
proach to quantifying model performance with different cri-
teria than a single one. The Kling–Gupta efficiency (Gupta et
al., 2009) (IKGE) was used as the criterion to evaluate model
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Table 1. The parameters of the models, and their prior ranges for calibration.

Parameter Explanation Prior range
for calibration

SiMax (mm) Maximum interception capacity 2
SuMax (mm)∗ The root zone storage capacity (10, 1000)
β (–)∗∗ The shape of the storage capacity curve (0.01, 5)
Ce (–) Soil moisture threshold for reduction of evaporation (0.1, 1)
D (–) Splitter to fast and slow response reservoirs (0, 1)
TlagF (d) Lag time from rainfall to peak flow (0, 10)
Kf (d) The fast recession coefficient (1, 20)
Ks (d) The slow recession coefficient (20, 400)

∗ SuMax is a parameter in HBV, TOPMODEL, and the HSC model, but the HSC-MCT model does not have SuMax
as a free parameter; ∗∗ β is a parameter in the HBV model, but not in the TOPMODEL, HSC, and HSC-MCT
models.

Table 2. The water balance and constitutive equations used in models. (Eq. (12)∗ is used in the HBV model, but is not used in the TOP-
MODEL, HSC, and HSC-MCT models).

Reservoirs Water balance equations Constitutive equations

Interception reservoir dSi
dt = P −Ei−Pe (8) Ei =

{
Ep; Si > 0
0; Si = 0

(9)

Pe =

{
0; Si < SiMax
P ; Si = SiMax

(10)

Unsaturated reservoir dSu
dt = Pe−Ea−Ru (11) Ru

Pe
=

(
Su

SuMax

)β
(12)∗

Ea
Ep−Ei

=
Su

CeSuMax
(13)

Splitter and Lag function Rf = RuD; Rs = Ru(1−D) (14)

Rf l(t)=

Tlagf∑
i=1

cf(i) ·Rf(t − i+ 1) (15)

cf(i)= i/
Tlagf∑
u=1

u (16)

Fast reservoir dSf
dt = Rfl−Qf (17) Qf = Sf/Kf (18)

Slow reservoir dSs
dt = Rs−Qs (19) Qs = Ss/Ks (20)

performance and as an objective function for calibration. The
equation is written as

IKGE = 1−
√
(r − 1)2+ (α− 1)2+ (ε− 1)2, (7)

where r is the linear correlation coefficient between simula-
tion and observation; α (α = σm/σo) is a measure of relative
variability in the simulated and observed values, where σm
is the standard deviation of simulated streamflow, and σo is
the standard deviation of observed streamflow; and ε is the
ratio between the average value of simulated and observed
data. And the IKGL (IKGE of the logarithmic flows) (Fenicia
et al., 2007; Gao et al., 2014b) is used to evaluate the model
performance in baseflow simulation.

A multi-objective parameter optimization algorithm
(MOSCEM-UA) (Vrugt et al., 2003) was applied for the
calibration. The parameter sets on the Pareto-frontier of the

multi-objective optimization were assumed to be the behav-
ioral parameter sets and can equally represent model perfor-
mance. The averaged hydrograph obtained by all the behav-
ioral parameter sets were regarded as the simulated result
of that catchment for further studies. The number of com-
plexes in MOSCEM-UA were set as the number of param-
eters (seven for HBV, six for TOPMODEL and the HSC
model, and five for the HSC-MCT model), and the number
of initial samples was set to 210 and a total number of 50 000
model iterations for all the catchment runs. For each catch-
ment, the first half period of data was used for calibration,
and the other half was used to do validation.

In module comparison, we defined three categories: if the
difference of IKGE of model A and model B in validation is
less than 0.1, model A and B are regarded as “equally well”.
If the IKGE of model A is larger than model B in validation
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by 0.1 or more, model A is regarded as outperforming model
B. If the IKGE of model A is less than model B in validation
by−0.1 or less, model B is regarded as outperforming model
A.

3 Dataset

3.1 The Bruntland Burn catchment

The 3.2 km2 Bruntland Burn catchment (Fig. 6), located in
north-eastern Scotland, was used as a benchmark study to
test the model’s performance based on a rich data base of
hydrological measurements. The Bruntland Burn is a typical
upland catchment in northwestern Europe (e.g., Birkel et al.,
2010), namely a combination of steep and rolling hillslopes
and over-widened valley bottoms due to the glacial legacy
of this region. The valley bottom areas are covered by deep
(in parts >30 m) glacial drift deposits (e.g., till) containing
a large amount of stored water superimposed on a relatively
impermeable granitic solid geology (Soulsby et al., 2016).
Peat soils developed (>1 m deep) in these valley bottom ar-
eas, which remain saturated throughout most of the year with
a dominant near-surface runoff generation mechanism de-
livering runoff quickly via micro-topographical flow path-
ways connected to the stream network (Soulsby et al., 2015).
Brown rankers, peaty rankers and peat soils are responsible
for a flashy hydrological regime driven by saturation excess
overland flow, while humus iron podzols on the hillslopes do
not favor near-surface saturation but rather facilitate ground-
water recharge through vertical water movement (Tetzlaff et
al., 2014). Land use is dominated by heather moorland, with
smaller areas of rough grazing and forestry on the lower hill-
slopes. Its annual precipitation is 1059 mm, with the sum-
mer months (May–August) generally being the driest (Ali et
al., 2014). Snow makes up less than 10 % of annual precip-
itation and melts rapidly below 500 m. The evapotranspira-
tion is around 400 mm per year and annual discharge around
659 mm. The daily precipitation, potential evaporation, and
discharge data range from 1 January 2008 to 30 Septem-
ber 2014. The calibration period is from 1 January 2008 to
31 December 2010, and the data from 1 January 2011 to
30 September 2014 is used as validation.

The LiDAR-derived DEM map with 2 m resolution shows
elevation ranging from 250 to 539 m (Fig. 6). There are
seven saturation area maps (Fig. 7) (2 May, 2 July, 4 August,
3 September, 1 October, 26 November 2008, and 21 Jan-
uary 2009), measured directly by the “squishy boot” method
and field mapping by the global positioning system (GPS), to
delineate the boundary of saturation areas connected to the
stream network (Birkel et al., 2010; Ali et al., 2014). These
saturation area maps revealed a dynamic behavior of expand-
ing and contracting areas connected to the stream network
that were used as a benchmark test for the HSC module.

Figure 6. (a) Study site location of the Bruntland Burn catchment
within Scotland; (b) digital elevation model (DEM) of the Brunt-
land Burn catchment; (c) the topographic wetness index map of the
Bruntland Burn catchment; (d) the HAND map of the Bruntland
Burn catchment.

3.2 MOPEX catchments

The MOPEX dataset was collected for a hydrological model
parameter estimation experiment (Duan et al., 2006; Schaake
et al., 2006), containing 438 catchments in the CONUS (Con-
tiguous United States). The longest time series range from
1948 to 2003. 323 catchments were used in this study (see the
name list in SI), with areas between 67 and 10 329 km2, and
excluding the catchments with data records<30 years, im-
pacted by snowmelt or with extreme arid climate (aridity in-
dex Ep/P>2). In order to analyze the impacts of catchment
characteristics on model performance, excluding hydromete-
orology data, we also collected the datasets of topography,
depth to rock, soil texture, land use, and stream density (Ta-
ble 3). These characteristics help us to understand in which
catchments the HSC performs better or worse than the bench-
mark models.

Hydrometeorology

The dataset contains the daily precipitation, daily maximum
and minimum air temperature, and daily streamflow. The
daily streamflow was used to calibrate the free parameters
and validate the models.
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Table 3. Data source of the MOPEX catchments. All links in this table were last accessed on 6 February 2017.

Data Unit Resources Website Reference

Daily precipitation mm d−1 MOPEX http://www.nws.noaa.gov/
ohd/mopex/mo_datasets.htm

Duan et al. (2006)

Daily maximum
temperature

◦C MOPEX Same as above Same as above

Daily minimum
temperature

◦C MOPEX Same as above Same as above

Daily runoff mm d−1 MOPEX Same as above Same as above

Aridity index – MOPEX Same as above Same as above

DEM m USGS http://earthexplorer.usgs.gov/ –

Slope ◦ USGS Same as above –

K factor of soil – USGS http://water.usgs.gov/GIS/
metadata/usgswrd/XML/
muid.xml

Wolock (1997),
Gao et al. (2018b)

Percentage of
forest cover

% NLCD http://www.mrlc.gov/ Homer et al. (2015),
Gao et al. (2018b)

Stream density km km−2 Horizon
Systems
Corporation

http://www.horizon-
systems.com/nhdplus/

–

Depth to bedrock cm STATSGO http://www.soilinfo.psu.edu/
index.cgi?soil_data%26conus
%26data_cov%26dtb

Schwarz et al. (1995),
Gao et al. (2018)

Topography

The DEM of the CONUS in 90 m resolution was down-
load from the Earth Explorer of United States Geological
Survey (USGS, http://earthexplorer.usgs.gov/, last access:
25 April 2017). The HAND and TWI map can be generated
from the DEM. The averaged elevation and HAND are used
as two catchment characteristics.

Soil texture

In this study, soil texture is synthetically represented by the
K factor, since theK factor is a lumped soil erodibility factor
which represents the soil profile reaction to soil detachment
(Renard et al., 2011). Generally, the soils (high in clay and
sand) have lowK values, and soils with high silt content have
larger K values. The averaged K factor for each catchment
was calculated from soil survey information available from
USGS (Wolock, 1997).

Land use

Land use data was obtained from National Land Cover
Database (NLCD, Wickham et al., 2014). Forest plays an es-
sential role in hydrological processes (Gao et al., 2018a), es-

pecially for the runoff generation (Brooks et al., 2010). For-
est area proportion was utilized as an integrated indictor to
represent the impact of vegetation cover on hydrological pro-
cesses.

Stream density

Stream density (km km−2) is the total length of all the
streams and rivers in a drainage basin divided by the to-
tal area of the drainage basin. Stream density data was
obtained from Horizon Systems Corporation (http://www.
horizon-systems.com/nhdplus/, last access: 25 April 2017).

Geology

Bedrock is a relative impermeable layer, as the lower
boundary of subsurface stormflow in the catchments where
soil depth is shallow (Tromp-van Meerveld and McDonnell,
2006). The depth to bedrock, as an integrated geologic
indicator, was accessed from STATSGO (State Soil Geo-
graphic, http://www.soilinfo.psu.edu/index.cgi?soil_data\
T1\textbackslash%26conus\T1\textbackslash%26data_
cov\T1\textbackslash%26dtb, last access: 25 April 2017)
(Schwarz and Alexander, 1995). The averaged depth to
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Figure 7. The measured saturated areas and the simulated contribut-
ing areas (black) by TOPMODEL and HSC models.

bedrock for each catchment was calculated for further
analysis.

4 Results of the Bruntland Burn

4.1 Topography analysis

The generated HAND map, derived also from the DEM, is
shown in Fig. 6, with HAND values ranging from 0 to 234 m.
Based on the HAND map, we can derive the Su–As curve
(Fig. 8) by analyzing the HAND map with the method in
Sect. 2.3. The TWI map of the BB (Fig. 6) was generated
from its DEM. Overall, the TWI map, ranging from −0.4 to
23.4, mainly differentiates the valley bottom areas with the
highest TWI values from the steeper slopes. This is proba-

bly caused by the fine resolution of the DEM map in 2 m, as
previous research found that the sensitivity of TWI to DEM
resolution (Sørensen and Seibert, 2007). From the TWI map,
the frequency distribution function and the accumulative fre-
quency distribution function can be derived (Fig. 8), with one
unit of TWI as the interval.

4.2 Model performance

It is found that all three models (HBV, TOPMODEL, and
HSC) can perform well in reproducing the observed hydro-
graph (Fig. 9). The IKGE of the three models are all around
0.66 in calibration, which is largely in line with other studies
from the BB (Birkel et al., 2010, 2014). And the IKGL are
0.76, 0.72, and 0.74 for HSC, HBV, and TOPMODEL, re-
spectively, in calibration, while in validation, the IKGE of the
three models are also around 0.66, while IKGL are 0.75, 0.70,
and 0.65 for the three models. Since the measured rainfall–
runoff time series only lasts from 2008 to 2014, which is too
short to estimate the SR20yr (proxy for SuMax) by the MCT
approach (which needs long-term hydro-meteorological ob-
servation data), the HSC-MCT model was not applied to this
catchment.

Figure 8 shows the calibrated power curve by HBV (av-
eraged beta= 0.98) with the Su–As curve obtained from the
HSC module. We found the two curves are largely compara-
ble, especially while the relative soil moisture is low. This re-
sult demonstrates that for the BB catchment with glacial drift
deposits and combined terrain of steep and rolling hillslopes
and over-widened valley bottoms, the HBV power curve can
essentially be derived from the Su–As curve of the HSC mod-
ule merely by topographic information without calibration.

The normalized relative soil moisture of the three model
simulations are presented in Fig. 9. Their temporal fluctu-
ation patterns are comparable. Nevertheless, the simulated
soil moisture by TOPMODEL has larger variation, compared
with HBV and HSC (Fig. 9).

4.3 Contributing area simulation

The observed saturation area and the simulated contribut-
ing area from both TOPMODEL and the HSC are shown
in Figs. 7, 9, and 10. We found that, although both mod-
ules overestimated the saturated areas, they can capture the
temporal variation. For example, the smallest saturated area,
both observed and simulated, occurred on 2 July 2008, and
the largest saturated areas both occurred on 21 January 2009.
Comparing the estimated contributing area of TOPMODEL
with the HSC module, we found that the results of the HSC
correlate better (R2

= 0.60, IKGE =−3.0) with the observed
saturated areas than TOPMODEL (R2

= 0.50, IKGE =−3.4)
(Fig. 10). For spatial patterns, the HSC contributing area is
located close to the river network and reflects the spatial pat-
tern of observed saturated area, while TOPMODEL results
are more scattered, probably due to the sensitivity of TWI to
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Figure 8. The curves of the beta function of the HBV model, and the Su–As curve generated by the HSC model (a). The frequency and
accumulated frequency of the TWI in the Bruntland Burn catchment (b).

Figure 9. (a) The observed hydrograph (Qo, black line) of the Bruntland Burn catchment in 2008, and the simulated hydrographs (Qm) by
the HBV model (blue line), TOPMODEL (green dash line), and HSC model (red dash line); (b) the comparison of the observed saturated
area of 7 days (black dots) and simulated relative soil moistures, i.e., HBV (blue line), TOPMODEL (green line and dots), and HSC (red line
and dots).

Hydrol. Earth Syst. Sci., 23, 787–809, 2019 www.hydrol-earth-syst-sci.net/23/787/2019/



H. Gao et al.: A simple topography-driven and calibration-free runoff generation module 799

DEM resolution (Fig. 7). The HSC is more discriminating in
terms of less frequently giving an unrealistic 100 % satura-
tion and retaining unsaturated upper hillslopes.

5 Results from the MOPEX catchments

5.1 Topography analysis of the contiguous US and 323
MOPEX catchments

To delineate the TWI map for the CONUS, the depressions of
the DEM were firstly filled with a threshold height of 100 m
(recommended by Esri). The TWI map of the CONUS is pro-
duced (Fig. S1 in the Supplement). Based on the TWI map of
the CONUS, we clipped the TWI maps for the 323 MOPEX
catchments with their catchment boundaries. And then the
TWI frequency distribution and the accumulated frequency
distribution of the 323 MOPEX catchments (Fig. S2), with
one unit of TWI as an interval, were derived based on the
323 TWI maps.

In Fig. 11, it is shown that the regions with large HAND
values are located in Rocky Mountains and Appalachian
Mountains, while the Great Plains has smaller HAND values.
The Great Basin, especially in the Salt Lake Desert, has small
HAND values, illustrating its low elevation above the nearest
drainage, despite a high elevation above sea level. From the
CONUS HAND map, we clipped the HAND maps for the
323 MOPEX catchments with their catchment boundaries.
We then plot their HAND-area curves, following the proce-
dures of I and II in Sect. 2.2. Figure 12a shows the normal-
ized HAND profiles of the 323 catchments.

Based on the HAND profiles and the Step III in Sect. 2.2,
we derived the normalized storage capacity distribution for
all catchments (Fig. 12b). Subsequently, the root zone mois-
ture and saturated area relationship (As–Su) can be plotted
by the method in Step IV of Sect. 2.2. Lastly, reversing the
curve ofAs–Su to the Su–As relation (Fig. 12c), the latter can
be implemented to simulate runoff generation by soil mois-
ture. Figure 12c interestingly shows that in some catchments,
there is almost no threshold behavior between rainfall and
runoff generation, where the catchments are covered by large
areas with low HAND values and limited storage capacity.
Therefore, when rainfall occurs, wetlands response quickly
and generate runoff without a precipitation–discharge thresh-
old relationship characteristic of areas with higher moisture
deficits. This is similar to the idea of FLEX-Topo where the
storage capacity is distinguished between wetlands and hill-
slopes, and on wetlands, with low storage capacity, where
runoff response to rainfall is almost instantaneous.

5.2 Model performance

Overall, the performance of the two benchmark models,
i.e., HBV and TOPMODEL, for the MOPEX data (Fig. 13)
is comparable with the previous model comparison experi-
ments, conducted with four rainfall–runoff models and four

land surface parameterization schemes (Duan et al., 2006;
Kollat et al., 2012; Ye et al., 2014). The median value of
IKGE of the HBV type model is 0.61 for calibration in the
323 catchments (Fig. 13), and averaged IKGE in calibration is
0.62. In validation, the median and averaged values of IKGE
are kept the same as calibration. The comparable perfor-
mance of models in calibration and validation demonstrates
the robustness of benchmark models and the parameter opti-
mization algorithm (i.e., MOSCEM-UA). The TOPMODEL
improves the median value of IKGE from 0.61 (HBV) to 0.67
in calibration, and from 0.61 (HBV) to 0.67 in validation. But
the averaged values of IKGE for TOPMODEL are slightly
decreased from 0.62 (HBV) to 0.61 in both calibration and
validation. The HSC module, by involving the HAND to-
pographic information without calibrating the β parameter,
improves the median value of IKGE to 0.68 for calibration
and 0.67 for validation. The averaged values of IKGE in both
calibration and validation are also increased to 0.65, compar-
ing with HBV (0.62) and TOPMODEL (0.61). Furthermore,
Fig. 13 demonstrates that, comparing with the benchmark
HBV and TOPMODEL, not only the median and averaged
values were improved by the HSC module, but also the 25th
and 75th percentiles and the lower whisker end, all have been
improved. The performance gains on baseflow (IKGL) have
been investigated and shown in the Fig. S3. These results in-
dicate the HSC module improved model performance to re-
produce hydrograph for both peak flow (IKGE) and baseflow
(IKGL).

Additionally, for the HSC-MCT model, the median IKGE
value is improved from 0.61 (HBV) to 0.65 in calibration,
and from 0.61 (HBV) to 0.64 in validation, but is not as well
performed as TOPMODEL (0.67 for calibration and valida-
tion). For the averaged IKGE values, they were slightly re-
duced from 0.62 (HBV) and 0.61 (TOPMODEL) to 0.59
for calibration and validation. Although the HSC-MCT did
not perform as well as the HSC module, considering there
is no free parameter to calibrate, the median IKGE value
of 0.64 (HBV is 0.61) and averaged IKGE of 0.59 (TOP-
MODEL is 0.61) are quite acceptable. In addition, the 25th
and 75th percentiles and the lower whisker end of the HSC-
MCT model are all improved compared to the HBV model.
Moreover, the largely comparable results between the HSC
and the HSC-MCT modules demonstrate the feasibility of the
MCT method to obtain the SuMax parameter and the potential
for HSC-MCT to be implemented in prediction of ungauged
basins.

Figure 14 shows the spatial comparisons of the HSC and
HSC-MCT models with the two benchmark models. We
found that the HSC performs “equally well” as HBV (the
difference of IKGE in validation ranges −0.1–0.1) in 88 %
catchments, and in the remaining 12 % of the catchments the
HSC outperforms HBV (the improvement of IKGE in vali-
dation is larger than 0.1). In not a single catchment did the
calibrated HBV outperform the HSC. Comparing the HSC
model with TOPMODEL, we found in 91 % of the catch-
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Figure 10. The comparison of the observed saturated area and simulated contributing areas by the TOPMODEL and HSC models.

Figure 11. The HAND map of the CONUS.

ments that the two models have approximately equal per-
formance. In 8 % of the catchments, the HSC model outper-
formed TOPMODEL. Only in 1 % of the catchments (two in
the Appalachian Mountains and one in the Rocky Mountains
in California), TOPMODEL performed better.

In order to further explore the impact of catchment char-
acteristics on model performance, we used topography (av-
eraged HAND, averaged slope, and averaged elevation), soil
(K factor), land cover (forest area proportion), climate (arid-
ity index), stream density, and geology (depth to rock) in-
formation to test the impact of catchment features on model
performance. Table 4 clearly shows that compared with
HBV, the 39 catchments with better performance have lower
HAND values (37 m), more gentle slopes (4.0◦), and smaller
forest area (22 %); while the elevation, K factor, aridity in-
dex, stream density and depth to rock are almost similar.
Also, in the catchments where HSC outperformed TOP-
MODEL, the catchments have smaller HAND (27 m), more
gentle slopes (3.6◦), moderate elevation (469 m), less forest

proportion (14 %), and more arid climate (aridity index is
1.3). TOPMODEL performs better in only three catchments
with larger HAND (193 m), steeper slopes (13.5◦), higher el-
evation (740 m), more humid climate (aridity index is 0.8),
and larger depth to rock (333 cm). In summary, the HSC
showed better performance in catchments with gentle topog-
raphy and more arid climate.

Without calibration of SuMax, as expected, the performance
of the HSC-MCT module slightly deteriorates (Fig. 13). In
comparison with HBV, the outperformed percentage reduced
from 12 % (HSC) to 4 % (HSC-MCT), the approximately
equally well-simulated catchments dropped from 88 % to
79 %, and the inferior performance increased from 0 % to
17 %. Also, in comparison with TOPMODEL, the better per-
formance dropped from 8 % (HSC) to 7 % (HSC-MCT), the
approximately equal catchments reduced from 91 % to 72 %,
and the inferior performance increased from 1 % to 21 %.
The inferiority of the HSC-MCT model is probably caused
by the uncertainty of the MCT method for different ecosys-
tems which have different survival strategies and use differ-
ent return periods to bridge critical drought periods. By using
ecosystem dependent return periods, this problem could be
reduced (Wang-Erlandsson et al., 2016).

To further explore the reason for the better performance
of the HSC approach, we selected the 08171000 catchment
in Texas (Fig. 14), in which both the HSC module and the
HSC-MCT module outperformed the two benchmark mod-
ules to reproduce the observed hydrograph (Fig. S4). The
HBV model dramatically underestimated the peak flows,
with IKGE as 0.54, while TOPMODEL significantly overes-
timated the peak flows, with IKGE as 0.30. The HSC-MCT
model improved the IKGE to 0.71, and the HSC model fur-
ther enhanced IKGE to 0.74.

Since the modules of interception, evaporation and rout-
ing are identical for the four models, the runoff generation
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Figure 12. (a) The profiles of the normalized HAND of the 323 MOPEX catchments; (b) the relations between area fraction and the
normalized storage capacity profile of the 323 MOPEX catchments; (c) the Su–As curves of the HSC model which can be applied to estimate
runoff generation from relative soil moisture for the 323 MOPEX catchments.

Table 4. Impacts of MOPEX catchment characteristics on model performance (HSC, HBV, and TOPMODEL).

Catchment characteristics HSC> HSC≈ HSC< HSC> HSC≈ HSC<
HBV HBV HBV TOPMODEL TOPMODEL TOPMODEL

Averaged HAND (m) 37 71 – 27 69 193
Averaged slope (◦) 4.0 5.7 – 3.6 5.6 13.5
Averaged elevation (m) 454 395 – 469 393 740
Averaged K factor (–) 0.28 0.29 – 0.29 0.29 0.25
Forest proportion (%) 22 43 – 14 43 68
Aridity index (–) 1.1 0.9 – 1.3 0.9 0.8
Stream density (–) 0.72 0.81 – 0.77 0.80 0.83
Averaged depth to rock (cm) 192 219 – 210 215 333

modules are the key to understand the difference in model
performance. Figure S5 shows the HBV β curve and the
Su–As curve of the HSC model, as well as the TWI fre-
quency distribution. We found that with a given Su/SuMax,
the HBV β function generates less contributing area than the
HSC model, which explains the underestimation of the HBV
model. In contrast, TOPMODEL has a sharp and steep accu-
mulated TWI frequency curve. In particular, the region with
TWI= 8 accounts for 40 % of the catchment area, and over
95 % of the catchment areas are within the TWI ranging from
6 to 12. This indicates that even with low soil moisture con-
tent (Su/SuMax), the contributing area by TOPMODEL is rel-
atively large, leading to the sharply increased peak flows for
all rainfall events.

6 Discussion

6.1 Rainfall–runoff processes and topography

We applied a novel approach to derive the relationship be-
tween soil moisture storage and the saturated area from
HAND. The areas with relatively low HAND values are sat-
urated earlier than areas with higher HAND values, due to

the larger storage capacity in higher HAND locations. The
outperformance of the HSC over the benchmark HBV and
TOPMODEL in gentle sloping catchments indicates that the
HSC module likely has a higher realism than the calibrated
HBV beta-function and the TWI of TOPMODEL in these
regions. Very interestingly, Fan et al. (2017) presented an
ecological observation in the global scale, and revealed the
systematic variation of rooting depth along HAND (Fig. 1,
in Fan et al., 2017). Since rooting depth can be translated
to root zone storage capacity through combination with soil
plant-available water (Wang-Erlandsson et al., 2016). This
large sample dataset, from an ecological perspective, pro-
vides strong support for the assumption of the HSC model
on gentle slopes, i.e., the increase in root zone storage capac-
ity with HAND. More interestingly, on excessively drained
uplands, rooting depth does not follow the same pattern,
with shallow depth and limited to rain infiltration (Fig. 1,
in Fan et al., 2017). This could explain the inferior per-
formance of HSC model to TOPMODEL in three MOPEX
catchments with excessively drained uplands (larger HAND,
steeper slope, higher elevation, and deeper depth to rock),
where Hortonian overland flow is likely the dominant mech-
anism, and the HSC assumption likely does not work well.
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Figure 13. The comparison between the HBV, TOPMODEL, HSC, and HSC-MCT models.

Figure 14. Performance comparison of the HSC and HSC-MCT models compared to two benchmark models, HBV and TOPMODEL, for
the 323 MOPEX catchments.
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This indicates that comparing with TWI, the HAND is closer
to catchment realism distinguishing hydrological similarity
in gentle topography catchments. The HSC module assumes
SEF as the dominant mechanism. But since in a real catch-
ment different runoff generating processes may act simulta-
neously in different environments (McDonnell, 2013; Hra-
chowitz and Clark, 2017). Such SEF dominated catchments,
or parts thereof, are typically characterized by a subdued re-
lief and thus gently sloping. In steeper catchments, where the
groundwater table is deeper and thus more additional water
can be stored in the soil, another conceptual parameterization
would be appropriate.

The FLEX-Topo model (Savenije, 2010) also uses HAND
as a topographic index to distinguish between landscape-
related runoff processes and has both similarity and differ-
ences with the HSC model. The results of the HSC model
illustrate that the riparian areas are more prone to be sat-
urated, which is consistent with the concept of the FLEX-
Topo model. Another important similarity of the two mod-
els is their parallel model structure. In both models it is
assumed that the upslope area has larger storage capacity,
therefore the upper land generates runoff less and later than
the lower land. In other words, in most cases, the local stor-
age is saturated due to the local rainfall, instead of flow
from upslope. The most obvious difference between the HSC
and the FLEX-Topo is the approach towards discretization
of a catchment. The FLEX-Topo model classifies a catch-
ment into various landscapes, e.g., wetlands, hillslopes, and
plateau. This discretization method requires threshold val-
ues to classify landscapes, i.e., threshold values of HAND
and slope, which leads to fixed and time-independent propor-
tions of landscapes. The HSC model does not require land-
scape classification, which reduced the subjectivity in dis-
cretization and restricted the model complexity, as well as
simultaneously allowing the fluctuation of contributing areas
(termed as wetlands in FLEX-Topo).

6.2 Catchment heterogeneity and simple models

Catchments exhibit a wide array of heterogeneity and com-
plexity with spatial and temporal variations of landscape
characteristics and climate inputs. For example, the Darcy–
Richards equation approach is often consistent with point-
scale measurements of matrix flow, but not for preferential
flow caused by roots, soil fauna, and even cracks and fissures
(Beven and Germann, 1982; Zehe and Fluehler, 2001; Weiler
and McDonnell, 2007). As a result, field experimentalists
continue to characterize and catalog a variety of runoff pro-
cesses, and hydrological and land surface modelers are devel-
oping more and more complicated models to involve the in-
creasingly detailed processes (McDonnell et al., 2007). How-
ever, there is still no compelling evidence to support the out-
performance of sophisticated “physically based” models in
terms of higher equifinality and uncertainty than the simple

lumped or semi-distributed conceptual models in rainfall–
runoff simulation (Beven, 1989; Orth et al., 2015).

But evidence is mounting that a catchment is not a ran-
dom assemblage of different heterogeneous parts (Sivapalan,
2009; Troch et al., 2013; Zehe et al., 2013), and conceptual-
izing heterogeneities does not require complex laws (Chase,
1992; Passalacqua et al., 2015). Parsimonious models (e.g.,
Perrin et al., 2003), with empirical curve shapes, likely result
in good model performance. Parameter identifiability in cali-
bration is one of the reasons. However, the physical rationale
of these parsimonious models is still largely unknown, lack-
ing a physical explanation to interpret these empirical curves
described by mathematical functions (e.g., Eq. 3 in Perrin et
al., 2003).

The benefits of the new HSC module are 2-fold. From a
technical point of view, the HSC allows us to make predic-
tion in ungauged basins without calibrating the beta param-
eter in many conceptual hydrological models. Furthermore,
the HSC module, from a scientific point of view, provides
us with a new perspective on the linkage between the spa-
tial distribution patterns of root zone storage capacity (long-
term ecosystem evolution) with associated runoff generation
(event-scale rainfall–runoff generation).

Asking questions of “why” rather than “what” likely leads
to more useful insights and a new way forward (McDonnell
et al., 2007). The HSC module provides us with a rationale
from an ecological perspective to understand the linkage and
mechanism between large-sample hillslope ecological obser-
vations and the curve of root zone storage capacity distri-
bution (Figs. 1, 2, and 3). Catchment is a geomorphologi-
cal and even an ecological system whose parts are related
to each other probably due to catchment self-organization
and evolution (Sivapalan and Blöschl, 2015; Savenije and
Hrachowitz, 2017). This encourages the hope that simplified
concepts may be found adequate to describe and model the
operation of the basin runoff generation process. It is clear
that topography, with fractal characteristic (Rodriguez-Iturbe
and Rinaldo, 1997), is often the dominant driver of runoff, as
well as being a good integrated indicator for vegetation cover
(Gao et al., 2014b), rooting depth (Fan et al., 2017), root zone
evaporation and transpiration deficits (Maxwell and Condon,
2016), soil properties (Seibert et al., 2007), and even geology
(Rempe and Dietrich, 2014; Gomes, 2016). Therefore, we ar-
gue that increasingly detailed topographic information is an
excellent integrated indicator allowing modelers to continue
systematically represent heterogeneities and simultaneously
reduce model complexity. The model structure and param-
eterization of both HSC and TOPMODEL are simple, but
not oversimplified, as they capture likely the most dominant
factor controlling runoff generation, i.e., the spatial hetero-
geneity of storage capacity. Hence, this study also sheds light
on the possibility of moving beyond heterogeneity and pro-
cess complexity (McDonnell et al., 2007), to simplify them
into a succinct and a priori curve by taking advantage of
catchment self-organization probably caused by co-evolution
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(Wang and Tang, 2014) or the principle of maximum entropy
production (Kleidon and Lorenz, 2004).

6.3 Implications and limitation

The calibration-free HSC-MCT runoff generation module
enhances our ability to predict runoff in ungauged basins.
PUB is probably not a major issue in the developed world,
with abundant comprehensive measurements in many places,
but for the developing world it requires prediction with
sparse data and fragmentary knowledge. Topographic infor-
mation with high spatial resolution is freely available glob-
ally, allowing us to implement the HSC model in global-
scale studies. In addition, thanks to the recent development,
testing, and validation of remote sensing precipitation and
evaporation products at large spatial scales (e.g., Ander-
son et al., 2011; Hu and Jia, 2015; Duan et al., 2019),
the SuMax estimation has become possible without in situ
hydro-meteorological measurements (Wang-Erlandsson et
al., 2016). These widely accessible datasets make the global-
scale implementation of the HSC-MCT module promising.

Although the new modules perform well in the BB and
the MOPEX catchments, we do not intend to propose that “a
model fits all”. The assumption of HSC, to some extent, is
supported by large-sample ecological field observation (Fan
et al., 2017), but it never means that the As–Su curve of
HSC can perfectly fit the other existing curves (e.g., HBV
and TOPMODEL). Unifying all model approaches into one
framework is the objective of several pioneer works (e.g.,
Clark, et al., 2008; Fenicia et al., 2011), but is beyond the
scope of this study. Moreover, while estimating the runoff
coefficient by the As–Su relation, rainfall in the early time
may cause the increase in Su/SuMax and the runoff coeffi-
cient (Moore, 1985; Wang, 2018). Therefore, neglecting this
influence factor, HBV (Eq. 1), TOPMODEL (Eqs. 2–4), and
HSC (Eqs. 5–6) theoretically underestimate the runoff coef-
ficient, which needs to be further investigated.

Finally, we should not ignore the limitations of the new
module, although it has better performance and modeling
consistency. (1) The threshold area for the initiating a stream
was set as a constant value for the entire CONUS, but the
variation of this value in different climate, geology and land-
scape classes (Montgomery and Dietrich, 1989; Helmlinger
et al., 1993; Colombo et al., 2007; Moussa, 2008) needs to be
future investigated. (2) The discrepancy between observed
and simulated saturation area needs to be further investi-
gated, by utilizing more advanced field measurement and
simultaneously refining the model assumption. To our un-
derstanding, there are two interpretations. Firstly, the over-
estimation of the HSC model is possibly because two runoff
generation mechanisms – SOF and the SSF occur at the same
time. However, the saturated area observed by the “squishy
boot” method (Ali et al., 2014), probably only distinguished
the areas where SOF occurred. Subsurface stormflow, also
contributing to runoff, cannot be observed by the “squishy

boot” method. Thus, this mismatch between simulation and
observation probably leads to this saturated area overestima-
tion. The second interpretation might be the different defini-
tion of “saturation”. The observed saturated areas are places
where 100 % of soil pore volume is filled by water. But the
modeled saturation areas are located where soil moisture is
above field capacity, and not necessarily 100 % filled with
water, which probably also results in the overestimation of
saturated areas. Interestingly, in theory the observed satu-
rated area should be within the simulated contributing area,
due to the fact that the saturated soil moisture is always larger
than field capacity. From this point of view, the observed sat-
urated area is smaller and within the contributing area simu-
lated by HSC, but TOPMODEL missed this important fea-
ture. (3) Only the runoff generation module is calibration
free, but the interception and response routines still rely on
calibration. Although we kept the interception and response
routine modules the same for the four models, the variation
of other calibrated parameters (i.e., SiMax, D, Kf, Ks, TlagF)
may also influence model performance in both calibration
and validation. (4) The computational cost of the HSC is
more expensive than HBV, and similar to TOPMODEL, due
to the cost of preprocessed topographic analysis. But once
the Su–As curve is completed, the computation cost is quite
comparable with HBV.

7 Summary and conclusions

In this study, we developed a simple and calibration-free hy-
drological module (HAND-based Storage Capacity curve,
HSC) based on a relatively new topographic index (HAND),
which is not only an excellent physically based indictor for
the hydraulic gradient, but also represents the spatial distribu-
tion of root zone storage capacity supported by large-sample
ecological observations. Based on HAND spatial distribu-
tion pattern, the soil moisture (Su) – saturated area (As) re-
lation for each catchment was derived, which was used to
estimate the As of specific rainfall event based on contin-
uous calculation of Su. Subsequently, based on the Su–As
relation, the HSC module was developed. Then, applying
the mass curve technique (MCT) approach, we estimated the
root zone storage capacity (SuMax) from observable hydro-
climatological and vegetation data, and coupled it with HSC
to create the calibration-free HSC-MCT module. The HBV
and TOPMODEL were used as two benchmarks to test the
performance of HSC and HSC-MCT on both hydrograph
simulation and ability to reproduce the contributing area,
which was measured for different hydrometeorological con-
ditions in the Bruntland Burn catchment in Scotland. Subse-
quently, 323 MOPEX catchments in the US were used as a
large-sample hydrological study to further validate the effec-
tiveness of our proposed runoff generation modules.

In the BB exploratory study, we found that HSC, HBV, and
TOPMODEL performed comparably well in reproducing the
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observed hydrograph. Comparing the estimated contributing
area of TOPMODEL with the HSC module, we found that
the HSC module performed better in reproducing saturated
area variation, in terms of the correlation coefficient and spa-
tial patterns. This likely indicates that HAND is maybe a bet-
ter indicator for distinguishing hydrological similarity than
TWI.

For the 323 MOPEX catchments, HSC improved the av-
eraged validation value of IKGE from 0.62 (HBV) and 0.61
(TOPMODEL) to 0.65. In 12 % of the MOPEX catchments,
the HSC module outperforms HBV, and in not a single catch-
ment did the calibrated HBV outperform the HSC. Compar-
ing with TOPMODEL, the HSC outperformed in 8 % of the
catchments, and in only 1 % of catchments TOPMODEL has
a better performance. Interestingly, we found that the HSC
module showed better performance in the catchments with
gentle topography, less forest cover, and larger aridity in-
dex. Not surprisingly, the IKGE of the HSC-MCT model was
slightly reduced to 0.59, due to the non-calibrated SuMax, but
still comparably well performed as HBV (0.62) and TOP-
MODEL (0.61). This illustrates the robustness of both the
HSC approach to derive the spatial distribution of the root
zone storage capacity (β) and the efficiency of the MCT
method to estimate the root zone storage capacity (SuMax).
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