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Abstract

Páramos, a neotropical alpine grassland-peatland biome of the northern Andes and

Central America, play an essential role in regional and global cycles of water, carbon,

and nutrients. They act as water towers, delivering water and ecosystem services

from the high mountains down to the Pacific, Caribbean, and Amazon regions. Pár-

amos are also widely recognized as a biodiversity and climate change hot spots, yet

they are threatened by anthropogenic activities and environmental changes. Despite

their importance for water security and carbon storage, and their vulnerability to

human activities, only three decades ago, páramos were severely understudied.

Increasing awareness of the need for hydrological evidence to guide sustainable man-

agement of páramos prompted action for generating data and for filling long-standing

knowledge gaps. This has led to a remarkably successful increase in scientific knowl-

edge, induced by a strong interaction between the scientific, policy, and (local) man-

agement communities. A combination of well-established and innovative approaches

has been applied to data collection, processing, and analysis. In this review, we pro-

vide a short overview of the historical development of research and state of knowl-

edge of the hydrometeorology, flux dynamics, anthropogenic impacts, and the

influence of extreme events in páramos. We then present emerging technologies for

hydrology and water resources research and management applied to páramos. We

discuss how converging science and policy efforts have leveraged traditional and

new observational techniques to generate an evidence base that can support the sus-

tainable management of páramos. We conclude that this co-evolution of science and

policy was able to successfully cover different spatial and temporal scales. Lastly, we

outline future research directions to showcase how sustainable long-term data col-

lection can foster the responsible conservation of páramos water towers.

K E YWORD S

advances-hydrology, science-policy, tropical-páramos

1 | INTRODUCTION

Páramos play an important role in regional and global cycles of water,

carbon, and nutrients, having a direct impact on people's livelihoods in

Latin America. The páramos are a collection of perennially humid,
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neotropical alpine ecosystems identified as hot spots for climate

change (Bradley, Vuille, Diaz, & Vergara, 2006; Castaño Uribe, 2002;

Dangles et al., 2017) (Figures 1 and 2). Densely populated areas in the

tropical Andes (e.g., Bogotá, Quito, Cuenca and Lima), mostly depend

on surface and shallow subsurface water sources for human consump-

tion, industrial uses and hydropower generation (Buytaert

et al., 2006). Surface water sources are particularly susceptible to the

potential impact of changes in land-use and land cover which could

lead to lower water availability and quality (Ochoa-Tocachi et al.,

2016; Tovar, Seijmonsbergen, & Duivenvoorden, 2013). Implementing

watershed interventions to improve ecosystem services became more

widespread. However, often these catchment interventions have not

been assessed well, sometimes resulting in negative hydrologic

impacts at local and regional scales (Buytaert, Iñiguez, & Bièvre, 2007;

Ochoa-Tocachi, Buytaert, & De Bièvre, 2016), trade-offs with other

ecosystem services (Bonnesoeur et al., 2019), and severe ecosystem

and biodiversity degradation (Hofstede, Groenendijk, Coppus, Fehse, &

Sevink, 2002). These negative impacts highlighted the need for a con-

certed effort to improve our hydrometeorological understanding of

the páramos. Likewise to avoid putting at risk the natural resources,

socio-economic and human development of vulnerable populations,

critical points for achieving the Sustainable Development

Goals (SDG).

In the last decades, research efforts on understanding the

ecohydrology and meteorology of páramos at various spatial–tempo-

ral scales has increased substantially. These efforts have overcome

several challenges to understand the highly variable processes that are

involved. Local catchment heterogeneity, large variability of hydro-

logic conditions, and extensive data-scarcity have historically been the

main limitation to further advance hydrological and meteorological

knowledge across the tropics and in Latin America (Bendix, 2000;

Célleri & Feyen, 2009; Correa et al., 2018; Riveros-Iregui, Covino, &

González-Pinzón, 2018). The body of literature also suggested Central

American páramos research lagging behind the much more organized

efforts in the northern Andes. Also, the complex topographical setting

of the volcanic Cordillera in Central America and the Andean moun-

tains generally complicate groundwater abstraction. These challenges

are exacerbated by the effects of environmental and human-induced

changes that have already prompted a fast rate of changes in the pár-

amos hydrology (Buytaert, Célleri, et al., 2006; Buytaert, Cuesta-Cam-

acho, & Tobón, 2011).

Scientific and public awareness of the importance of studying the

hydrology of páramos gained momentum around the turn of the cen-

tury, as a result of several seminal research papers and policy publica-

tions (e.g., Hofstede, 1995; Kapelle & Uffelen, 2005; Mena, Medina, &

Hofstede, 2001; Podwojewski, Poulenard, Zambrana, & Hofstede,

F IGURE 1 Extent of the
páramos biome in the northern
Andes and Central America
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F IGURE 2 Typical landscapes of the Andean páramos
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2002). These publications triggered a rapidly increasing community

of research and practice around the hydrology, ecology, and clima-

tology of páramos, featuring a variety of innovative techniques,

intensive monitoring, and model-based regionalization approaches

to improve understanding of hydrological processes and the effect

of external pressures. In such emerging research, field-experimental

based studies started assessing previously ignored variables such as

precipitation structure (Orellana-Alvear, Célleri, Rollenbeck, &

Bendix, 2017; Padrón, Wilcox, Crespo, & Célleri, 2015) and clarify-

ing less known processes such as interception (Ochoa-Sánchez,

Crespo, & Célleri, 2018), evapotranspiration (Carrillo-Rojas, Silva,

Rollenbeck, Célleri, & Bendix, 2019; Córdova, Carrillo-Rojas,

Crespo, Wilcox, & Célleri, 2015; Ramón-Reinozo, Ballari, Cabrera,

Crespo, & Carrillo-Rojas, 2019), and carbon and nutrient concentra-

tions in soil and vegetation (Minaya, Corzo, van der Kwast, &

Mynett, 2016; Peña-Quemba, Rubiano-Sanabria, & Riveros-Iregui,-

2016; Pesántez, Mosquera, Crespo, Breuer, & Windhorst, 2018;

Riveros-Iregui et al., 2018). For example, the use of conservative

and bio-reactive tracers enlightened hydrological process under-

standing and allowed tracking and quantifying fluxes, storage and

mixing, and assisted in defining the spatial–temporal dynamics of

runoff sources and flow pathways (Correa et al., 2017; Esquivel-

Hernández et al., 2018; Minaya, Camacho Suarez, Wenninger, &

Mynett, 2016; Mosquera et al., 2016; Riveros-Iregui et al., 2018).

Hydrologic model applications reproduced more accurately the

observed streamflows, year-round and in drought and flood condi-

tions (Avilés, Célleri, Paredes, & Solera, 2015; Avilés, Célleri,

Solera, & Paredes, 2016; Mora, Campozano, Cisneros, Wyseure, &

Willems, 2014; Muñoz, Orellana-Alvear, Willems, & Célleri, 2018).

In addition, researchers started to evaluate data uncertainties

related to the location and technical properties of equipment in the

increasingly denser monitoring networks (Guallpa, 2013; Muñoz,

Célleri, & Feyen, 2016; Sucozhañay & Célleri, 2018). As a result, the

evaluation of land-use and climate change scenarios and their

impact on the hydrological system became more feasible and hel-

ped decision-makers to predict potential economic benefits for sev-

eral service providers (Bremer et al., 2019; Flores-López, Galaitsi,

Escobar, & Purkey, 2016; Kroeger et al., 2019).

Therefore, this paper attempts to summarize the historical efforts

and recent concerted research dynamics that have advanced the

hydrological understanding of tropical páramos in the last decades

with a regional focus on Latin America. However, considerable knowl-

edge gaps still exist, and we outline research directions that have

potential to support sustainable development of páramos ecosystems.

1.1 | Historical development of research in
páramos

As of July 2020, 1129, scientific publications containing the word “pár-

amo” in their title, abstract or keywords have been published focused on

Latin America according to Scopus-Elsevier's database of abstracts and

citations (Figure 3). The first publications reported on research were con-

ducted in the Colombian páramos, between 1831 and 1848. In 1,831,

Boussingault analysed the composition of a new mineral found at

3,800 m a.s.l. in Páramo Rico, near Pamplona and other authors analysed

the acidic mineral water near the Purace volcano in Páramo de Ruiz. In the

20th century, 246 scientific documents were published, and a continuous

growth started in 1967. As a result, some seminal publications paved the

way to build knowledge about the functioning of páramos ecosystems.

From an ecological perspective, Cuatrecasas (1934), Monasterio (1980),

Cleef (1981), and Luteyn (1999) established a baseline on Andean páramos

vegetation diversity. From a hydrological lens, Junk (1993) characterized

páramos wetlands, Hofstede (1995) analysed the effect of human prac-

tices on soil covered by grasslands and Sarmiento (2000) quantified the

water balance components in the Venezuelan páramos.

F IGURE 3 Historical development of
scientific publications of páramos
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The increasing level of interdisciplinary research, international

cooperation and collaborative networks has resulted in 880 publica-

tions after 2000. This positions páramos as a highly studied and glob-

ally referenced biome for the rapid research progress that has been

achieved. Among those publications, some benchmark papers

highlighted milestones for research development in different disci-

plines. For example, key papers in ecology are that of Sklenar and

Ramsay (2001), where they investigated the diversity of zonal pár-

amos vegetation in Ecuador. The book “Páramos de Costa Rica” by

Kapelle and Uffelen (2005) presented most of the geomorphology,

ecology and paleoclimate research from Central America. Cuesta et al.

in 2017 analysed the latitudinal and altitudinal patterns of vegetation

communities along the Andean region. More recently, in 2019,

Flantua et al. evaluated how climate fluctuations in combination with

topography influenced habitat connectivity over thousands of years.

Key papers in hydrology are those of Buytaert, Célleri, et al. (2006);

Buytaert, Iñiguez, and Bièvre (2007) where the authors assessed

(a) the effect of land-use change on the hydrological system and

(b) the afforestation and cultivation impacts on the water yield. These

papers used, for the first-time, information from paired catchments.

Following this research line, Ochoa-Tocachi et al. in 2016 established

guidelines for regionalizing land-use impacts on streamflow genera-

tion using a network of paired catchments in the tropical Andes.

More recently, the development of advanced technology also hel-

ped in collecting more fine resolution data. For example, the access to

more specialized equipment allowed setting-up Eddy-covariance flux

towers and radars in the high tropical páramos in 2014. The

RADARNET-SUR, the first weather radar network installed in páramos

was used to detect the low frequency of heavy rain and to confirm

the spatial variations of precipitation across páramos sites (Orellana-

Alvear et al., 2017). Knowledge about the importance of the páramos

biome was recognized much earlier in the Andes than in Central

America, leading to more structured research efforts compared to

Central America. However, emerging studies in geomorphology, ecol-

ogy and hydrology in Central America (Chai et al., 2020; Esquivel-

Hernández et al., 2018; Quesada-Román, Ballesteros-Cánovas, Guillet,

Madrigal-González, & Stoffel, 2020) paved the way for future

research and complemented the regional perspective of this study.

2 | CURRENT STATE OF KNOWLEDGE

2.1 | The páramos biome

The páramos constitute a tropical alpine biome located most exten-

sively in the Northern Andes (between 11�N and 8�S) and to a lesser

extent in parts of Central America (Figure 1) and dominated by grass-

lands, rosettes, and bushes. They occur above the tropical montane

forest biome (⁓3,000 m a.s.l.) and below the cryosphere (⁓5,000 m a.

s.l.) (Josse et al., 2009; Luteyn, 1999). However, their delineation is

not always clear because of deforestation and increasing encroach-

ment of the lower páramos for agricultural purposes (López

Sandoval & Valdez, 2015; Tovar, Arnillas, Cuesta, & Buytaert, 2013)

and ongoing induced glacier retreat caused by global-warming

(Morueta-Holme et al., 2015). Páramos occupy an area of approxi-

mately 35,000 km2 (Hofstede et al., 2002), with the largest extents

occurring in Colombia and Ecuador and smaller disconnected patches

in Venezuela (Páramos de Mérida) and Costa Rica (Cerro Chirripó and

Kamuk). The southern limit of páramos is known as the Jalca

(Sánchez-Vega & Dillon, 2006; Tovar, Duivenvoorden, Sánchez-

Vega, & Seijmonsbergen, 2012), a transitional vegetation toward a

drier alpine biome (Puna) of the central and south Peruvian Andes

(Cuesta et al., 2017; Ochoa-Tocachi, Buytaert, De Bièvre, Célleri,

et al., 2016). Although ecosystems with very similar biogeographical

and hydrometeorological characteristics to páramos occur as far south

as Bolivia (Páramo Yungeño) (Jørgensen, Nee, & Beck, 2014), we focus

here on the páramos biome of the Northern Andes and Central

America only.

One key characteristic of páramos is the high level of fragmenta-

tion. Páramos have been a very dynamic landscape in the past where

changes in isolation and connectivity were mostly defined by the

complex topography (Flantua, O'Dea, Onstein, Giraldo, &

Hooghiemstra, 2019). Glacial and interglacial periods raised and

lowered, respectively, the upper forest line leading to changes in con-

nectivity that have directly impacted the region's flora (Flantua &

Hooghiemstra, 2018; van der Hammen, 1982; Hooghiemstra & Van

der Hammen, 2004 and Quesada-Román, Campos, Alcalá-Reygosa, &

Granados-Bolaños, 2020 for a Costa Rican reconstruction of the for-

est and snow line). These changes are one of the main drivers for the

high levels of endemism and species diversification, making páramos

the fastest evolved biome among biodiversity hotspots (Madriñán,

Cortés, & Richardson, 2013).

The vegetation of páramos (Figure 2) is dominated by tussock

grasses (Calamagrostis, Stipa and Festuca sp.) with scarce forest pat-

ches (e.g., Polylepis sp.), transitions to acaulescent rosettes

(e.g., Werneria nubigena, Hypochaeris sessiliflora), and cushions plants

(e.g., Azorella sp., Plantago rigida) at higher elevations (Luteyn, 1999;

Ramsay & Oxley, 1997). The total number of plant species recorded in

páramos is 3,595 distributed among 540 genera of which 14 are

endemic (Sklenar & Balslev, 2005). Páramos have the highest number

of plant species among tropical alpine flora (Sklenar, Hedberg, &

Cleef, 2014) and are fundamental part of the habitats of emblematic

wildlife species such as the Andean condor (Vultur gryphus) and the

spectacled bear (Tremarctus ornatus).

2.2 | Hydrometeorology of páramos

Research outlining the current state of knowledge of hydrometeoro-

logical variables and fluxes, with precipitation, interception, tempera-

ture, and evapotranspiration components, as well as the role of soils

and vegetation in the hydrological response of páramos is presented

below. Precipitation in páramos is known for its remarkable spatial–

temporal variability (Buytaert, Célleri, Willems, De Bièvre, &

Wyseure, 2006; Célleri, Willems, Buytaert, & Feyen, 2007) caused by

the interaction between various synoptic climate processes and the

CORREA ET AL. 4613



complex topography. The mean annual precipitation calculated from

the global precipitation product CHIRPS (Climate Hazards Group

InfraRed Precipitation with Station Data) between 2000 and 2014

ranges between 150 and 4,090 mm yr−1 (Figure 4a). The highest

mean maximum precipitation values are reported in Costa Rica and

the lowest minimum in Perú (Table 1). Páramos are usually referred to

as humid ecosystems (Buytaert et al., 2006; Padrón et al., 2015). Rain-

fall ranges between 1,000 and 2,000 mm yr−1 with values exceeding

3,000 mm yr−1 in some páramos on the Amazonian slopes of the

Andes. However in a few drier páramos, rainfall can be well below

500 mm yr−1, such as those of Chimborazo in Ecuador

(Clapperton, 1990; Saberi et al., 2018). The analysis of rainfall

extremes evidenced that the southern component of tropical airflow

is important for the distribution of wet convection, leading to a high

intensity of precipitation in the Andean mountains. The mountains

themselves dampen the airflow on a large-scale, enabling local hydro-

thermal gradients to control extreme precipitation anomalies

(Pineda & Willems, 2018).

The predominance of low-intensity rainfall and frequent fog, cau-

ses in parts of the Andes exceptionally high interception rates. For

example, tussock grass in páramos of Zhurucay in southern Ecuador

intercept between 10 and 100% of total rainfall, with a maximum

storage capacity of 2 mm (Ochoa-Sánchez et al. (2018). Similarly, fog

and drizzle can represent between 7 and 28% (120–212 mm yr−1) of

annual rainfall, as measured in the Colombian páramos (Cárdenas,

Tobón, and Buytaert (2017). Using TRMM-3b43 (Tropical Rainfall

Measuring Mission) and MODIS (Moderate Resolution Imaging

Spectroradiometer) precipitation indices were estimated for the pár-

amos (courtesy of Arciniegas-Esparza) (Figure 4b–d). The southern

páramos present a prolonged dry season (high values of seasonal pre-

cipitation index, SPI), with the highest indexes of evaporation (EI) and

aridity (AL), 50 and 100% respectively, higher than their northern

counterparts (Table 1). Mid-ranges of EI were observed for most of

the region with minima in Ecuador and Colombia. In addition, low arid-

ity (AI) was observed in the central and northern páramos. Compared

to rainfall, temperature across the year is much more homogeneous in

páramos. Mean annual air temperatures range from around 10�C in

the lower limit of the páramos to close to 0� on their upper fringes

bordering the cryosphere (Buytaert, Célleri, et al., 2006). The low lati-

tude of páramos limits annual seasonal temperature variability. In con-

trast, daily temperature variations can be extreme and are a direct

result of the high altitude and Equatorial position, which gives pár-

amos one of the world's highest influx of shortwave radiation

(Buytaert, Célleri, et al., 2006).

Actual evapotranspiration (ETa), can account for 51% of total

annual rainfall (Carrillo-Rojas et al. (2019), with values of 646 mm yr−1

F IGURE 4 Annual precipitation and indexes: Seasonal Precipitation Index (SPI), Aridity Index (AI) and Evaporative Index (EI) for the páramos
region

TABLE 1 Annual precipitation and indexes: Seasonal Precipitation Index (SPI), Aridity Index (AI) and Evaporative Index (EI) calculated for each
country

Country

Annual precipitation (mm) SPI index (−) Evaporative index (−) Aridity index (−)

Max Mean Min Max Mean Min Max Mean Min Max Mean Min

Costa Rica 3,992 3,230 2,794 0.40 0.36 0.30 0.43 0.39 0.37 0.55 0.51 0.48

Venezuela 2,399 1,319 608 0.48 0.31 0.19 1.02 0.69 0.47 1.63 1.11 0.65

Ecuador 3,236 987 151 0.88 0.30 0.12 1.57 0.78 0.12 2.68 1.16 0.13

Colombia 4,087 1,640 798 0.50 0.30 0.10 0.93 0.55 0.11 1.44 0.84 0.14

Perú 1,783 901 213 0.79 0.49 0.15 1.91 1.15 0.36 7.99 2.26 0.60
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(Buytaert, Iñiguez, & Bièvre, 2007) and 723 mm yr−1 (Córdova

et al., 2015). However, when data are limited, errors can be as high as

30% (Carrillo-Rojas, Silva, Córdova, Célleri, & Bendix, 2016; Córdova

et al., 2015). Using an Eddy-covariance tower, one of the highest in

the world, evapotranspiration for páramos was measured, reporting

values of around 620 mm yr−1 in southern Ecuador (Carrillo-Rojas

et al., 2019; Ochoa-Sánchez, Crespo, Carrillo-Rojas, Marín, &

Célleri, 2020; Ochoa-Sánchez, Crespo, Carrillo-Rojas, Sucozhañay, &

Célleri, 2019). At the same site, net radiation was reported as the pri-

mary control of ETa (Ochoa-Sánchez et al., 2020); while meteorologi-

cal observations highlighted the role of radiation and air humidity

variation in the control of the hydrological system (Carrillo-Rojas

et al., 2019; Ochoa-Sánchez et al., 2020). Furthermore, Buytaert and

Beven (2011) emphasized the importance of non-stationary hydrolog-

ical processes such as changing evapotranspiration, infiltration, and

routing due to vegetation growth.

The hydrological response of páramos is strongly related to their

soil conditions. Buytaert, Wyseure, De Bièvre, and Deckers (2005)

revealed that the probability of water stress occurrence in wet pár-

amos soils is reduced due to their hydraulic conductivity, which pre-

vents soil moisture to drop below 60 vol%. Páramos soils are

therefore important regulators of runoff production (Harden, 2006).

The most organic-rich soils, primarily located at the foot of the

hillslopes and at the bottom of the valleys, are commonly covered by

cushion plants and often at saturated conditions (Buytaert

et al., 2005). The more freely draining soils are situated on the

hillslopes under a cover of tussock grass. The rainfall-runoff response

is mainly controlled by the variable extent of the saturated zone in the

valley bottom (Correa et al., 2017). Water from valley soils compose

around 40% of the runoff in a headwater catchment in the Ecuadorian

páramos. During rainier periods, the contributing area expands, thus

increasing the connectivity with lateral flow from hillslopes and thus

its contribution to the channel network. In drier conditions, only the

deep soil horizons from the hillslopes seem to be hydrologically con-

nected (Correa et al., 2017), and water from these horizons drains via

the riparian area into streams (Crespo et al., 2011). A particular char-

acteristic of most of the studied Andean páramos catchments is the

presence of underlying impermeable bedrock that minimizes deep

infiltration and greatly limits the groundwater contributions (Buytaert,

Iñiguez, & Bièvre, 2007). Nevertheless, some regions also present

deep permeable soils, sustain important aquifers (Buytaert, Iñiguez,

et al., 2006; Favier et al., 2008), and prove the influence of shallow

groundwater on stream generation, especially when soil moisture

decreases (Correa et al., 2017, 2018; Favier et al., 2008). Central

American páramos were characterized by shallower soils with high

organic matter content (Kapelle & Uffelen, 2005) and likely varying

runoff generation mechanisms compared to the previously mentioned

Andean páramos.

Runoff ratios (ratio between annual precipitation and annual dis-

charge) in páramos have been reported at between 0.50 and 0.70 in

natural wet páramos (Buytaert, Iñiguez, & Bièvre, 2007; Ochoa-

Tocachi, Buytaert, De Bièvre, Célleri, et al., 2016), reaching values as

high as 0.9 at event scale (Correa et al., 2016). Páramos water yield

increases with the extent and amount of wetlands, likely because of

saturation excess flow (Mosquera, Lazo, Célleri, Wilcox, &

Crespo, 2015). In addition, threshold-driven hydrological processes,

such as disconnected water storage within the microtopography of

the catchment, play a crucial role in the runoff generation and catch-

ment hydrological response (Buytaert & Beven, 2011).

2.3 | Human impacts on the hydrology of páramos

The high altitudinal position of páramos compared to the elevation of

most human settlements and cities makes them convenient “natural

water towers” (Messerli, Viviroli, & Weingartner, 2004) from which

water can be sourced by gravity. But the páramos themselves have

been used for thousands of years for different human activities. Since

the 20th century, páramos have been facing unprecedented anthropo-

genic pressures (Molina, Vanacker, Brisson, Mora, & Balthazar, 2015;

Roa-García, Brown, Schreier, & Lavkulich, 2011; White, 2013). There

is increasing evidence that intensive and extensive livestock (Molina

et al., 2007), cultivation and land management practices negatively

affect páramos' local biodiversity, their functional capacity

(Erwin, 2009), and water yield (Buytaert, Iñiguez, & Bièvre, 2007). Sci-

entific and public awareness put in evidence the lack of knowledge

about the potential impact of rural development and ecosystem deg-

radation on the hydrology of páramos (Célleri & Feyen, 2009).

Research on the impacts of anthropogenic intervention on

the hydrological services of páramos (Buytaert, Célleri, Bièvre, &

Iñiguez, 2007) have focused on comparing páramos natural vegetation

with three main land-use types: cultivated lands, livestock grazed areas

and forest plantations, including anthropic introduction of fire and

sometimes land degradation (Poulenard, Podwojewski, Janeau, &

Collinet, 2001). Despite the protection in National Parks of Central

American páramos and limited human intervention (Quesada-Román,

Campos, et al., 2020; Veas-Ayala et al., 2018) these systems are still

severely understudied compared to the Andean counterparts. Crop-

lands tend to reduce catchment's regulation capacity (⁓40% reduction)

(Célleri & Feyen, 2009; Ochoa-Tocachi, Buytaert, De Bièvre, Célleri,

et al., 2016), increase peak discharge (⁓20%), reduce base flow (⁓50%)

(Buytaert, Iñiguez, et al., 2006; Buytaert, Iñiguez, & Bièvre, 2007), and

reduce soil storage capacity (up to 26% reduction) (Sarmiento, 2000).

Cultivated areas also reduce the soil field capacity (e.g., from 100 to

83%) and wilting point (e.g., from 83 to 63%) (Díaz & Paz, 2002), and

increase evapotranspiration rates up to 66% (Sarmiento, 2000).

Livestock grazing tends to increase soil density and reduce poros-

ity, with often negative impacts on soil structure. For example, an

increase of soil bulk density of up to 0.2 g cm3 under extensive graz-

ing, and of 0.7 g cm3 under intensive grazing conditions compared to

undisturbed páramos soils, has been reported in Popayán Colombia

(Díaz & Paz, 2002). Water yield reduction, as a result of increasing

evaporation, is typically less than 15% (Crespo et al., 2010), and this is

usually associated with an increase in streamflow flashiness and a

decrease in catchment's hydrological regulation capacity (Ochoa-

Tocachi, Buytaert, De Bièvre, Célleri, et al., 2016).
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The introduction of exotic species for afforestation has been a

common practice in the Andean páramos (Bonnesoeur et al., 2019).

Pine trees, in particular, have been used to improve land productivity

(Farley, Kelly, & Hofstede, 2004). However, this practice affects the

hydrological response of páramos ecosystems. Pairwise catchment

experiments in southern Ecuador showed that base flow reduced up

to 66% (Buytaert, Célleri, et al., 2007; Ochoa-Tocachi, Buytaert, De

Bièvre, Célleri, et al., 2016) and water yield decreased between

42 and 50% (Crespo et al., 2010; Ochoa-Tocachi, Buytaert, De Bièvre,

Célleri, et al., 2016) in afforested grasslands in comparison to native

grasslands. These changes in hydrological responses are a conse-

quence of higher interception in the canopy and higher evapotranspi-

ration of the exotic trees. Burning, another common practice in the

páramos, increases soil erosion, runoff, and reduces the rainfall-runoff

response time (Molina et al., 2007) as well as the saturated soil

hydraulic conductivity (Poulenard et al., 2001). Drying and hydropho-

bicity (up to 40%) have been reported due to the direct exposure of

dark soils to sunshine (Buytaert et al., 2002). Nevertheless, a recent

study concluded that soil and water conservation programs might be

able to use burning to achieve adequate long-term vegetation cover

in disturbed páramos (Bremer et al., 2019).

2.4 | Climate change impacts on páramos

Climate change is affecting the páramos in various ways; however,

assessing these impacts is complicated by remarkably high uncer-

tainties. Although there is good agreement between climate models

on atmospheric warming, the increased temperatures are expected to

be stronger at high altitude (Pepin et al., 2015). Precipitation and sub-

sequent discharge variations are much more variable with differences

up to 50% between CMIP3 model simulations and observed values in

the Andes (Buytaert & De Bièvre, 2012). González-Zeas et al. (2019)

compared results from a Regional Climate Model (RCM) with

observed data in Ecuador and found an over prediction of precipita-

tion by the RCM.

Despite these uncertainties, some regional patterns can be

detected. Whereas part of the Bolivian Altiplano is likely to experi-

ence a reduction in precipitation, the northern Andes are likely to

experience a future increase in precipitation (Buytaert & De

Bièvre, 2012). Veas-Ayala et al. (2018) projected a significant temper-

ature increase of a minimum of 2�C by the end of the century even

under optimistic emission scenarios for the Costa Rican páramos at

Chirripó National Park. The same study reported rainfall decreasing by

5% for the pessimistic emission scenario until 2099 with associated

likely reduced runoff of major river systems originating in the Chirripó

páramos.

An additional course of uncertainty is the El Niño Southern Oscil-

lation (ENSO), which is an imbalance of sea-surface temperatures

(SST) and ensuing air pressure in the tropical Pacific (National Oceanic

and Atmospheric Administration; NOAA, 2019) with severe impacts

on Andean and Central America weather patterns. The intensity and

duration of ENSO increased substantially in the last decades,

indicating a possible link to anthropogenic-induced climatic changes

that occurred during the same period (Zheng, Hui, Xie, Cai, &

Long, 2019).

Changes in climate will propagate through the terrestrial water

cycle, thus affecting directly its hydrology. Most of the northern

Andean region is expected to experience an increase in precipitation

under future climate projections (Buytaert & De Bièvre, 2012). How-

ever, the increase in evapotranspiration as a result of warming is likely

to compensate for the increase in precipitation, resulting in a net

reduction in runoff.

Climatic changes will lead to changes in vegetation and soils,

which may propagate to the water cycle. Ecological niche models have

been used to model and project the distribution of Andean biomes

and species under future climate scenarios in the tropical Andes

(Tovar, Arnillas, et al., 2013; Vázquez-Patiño, Campozano, Mendoza, &

Samaniego, 2020). Results project a median loss of páramos extent of

31.4% by 2039 under emissions scenario A1B, mainly due to a lack of

available space for upslope migration (Tovar, Arnillas, et al., 2013). For

species, approximately 50% of tropical Andean plants and birds are

projected to experience reductions of up to 45% in their climatic

niche, defined as the optimal set of climatic conditions for survival,

with 10% of species potentially becoming extinct (Ramirez-Villegas

et al., 2014).

Despite these advances, estimating climate change on mountain

regions remains inherently challenging. First, the low number of

weather stations – which restricts sound spatial–temporal data –

makes it difficult to quantify a clear baseline and the resulting changes

in hydrological processes caused by climate change influences. Sec-

ond, the highly variable topography results in steep and sudden

changes in local weather patterns which are hard to represent in avail-

able global climate models (GCMs) (Buytaert et al., 2010). Given the

limited data and simplifications of the climate processes in GCMs,

downscaling results from global or regional climate models is highly

uncertain. This limits the possibility of concluding a more detailed

analysis of expected climatic changes in the páramos.

3 | NOVEL OBSERVATIONAL TECHNIQUES
AND APPROACHES APPLIED IN P �ARAMOS

3.1 | Tracer hydrology and flux exchange in
páramos

Knowledge about the spatial distribution of water sources, the tempo-

ral dynamics of water and material fluxes, and release mechanisms is

needed to represent a holistic response of catchment hydrological

behaviour. Such knowledge can be gained using tracers in conjunction

with independently measured hydrometric data (Buttle, 1994;

Inamdar et al., 2013). A variety of tracers has been successfully

applied in the páramos to improve our understanding of its hydrology.

For example, by using hydrochemical tracers, Correa et al. (2017,

2018); Correa, Ochoa-Tocachi, and Birkel (2019) found the paramount

role of soils from different geographical areas and shallow-
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groundwater contributions to runoff composition. Time-domain water

stable isotopes have been used to determine the isotopic composition

of high mountain lakes in Central American páramos (Esquivel-

Hernández et al., 2018), to estimate mean transit times (Mosquera

et al., 2016; Muñoz-Villers & McDonnell, 2012; Roa-García &

Weiler, 2010) and quantify stream water ages (53–264 days)

(Mosquera, Segura, et al., 2016). Most of these studies aimed to

assess the evolution of hydrological processes under different hydro-

meteorological conditions and quantify runoff generation (Minaya,

Camacho Suarez, Wenninger, & Mynett, 2016),

Other tracers such as the “smart” bio-reactive tracers

(e.g., resazurin [Raz]) have been used to assess carbon dioxide (CO2)

dynamics. Artificial tracers (bio-reactive RAZ in 4 days – high resolu-

tion) applied in the Colombian páramo wetlands showed that most of

the CO2 outgassing occurs near the stream wetland interface, where

the potential CO2-enriched water flowing out of the wetland mixes in

a turbulent form (Riveros-Iregui et al., 2018). A high density of

carbon-rich peatlands was mapped in the high elevation mountains of

the Ecuadorian páramos (Hribljan et al., 2017) improving sustainable

management for national and global carbon accounting. Carbon diox-

ide dynamics have also been assessed using portable soil respiration

chambers in field experiments. Using this technique, agricultural man-

agement and land-use changes were identified as the main drivers of

soil-atmosphere exchange of CO2 in páramos of Guerrero (Colombia)

(Peña-Quemba et al., 2016). The authors additionally stated that the

easy decomposition of organic matter in páramos soils turns them into

carbon sinks. Because soil respiration is a key factor in the heat bal-

ance, the concentration of atmospheric carbon and global ecological

changes (Jassal et al., 2007; Veenendaal, Kolle, & Lloyd, 2004). Small

changes in soil respiration as a potential effect of global warming can

determine the shift point where an ecosystem acts as a source or sink

for CO2 (Jassal et al., 2007). A recent study revealed that páramos are

carbon sources (Carrillo-Rojas et al., 2019) and that these ecosystems

are more susceptible to lose the carbon fixed in the soil (especially dry

periods) due to the effects of climate change and vegetation alter-

ations (Carrillo-Rojas et al., 2019).

3.2 | Remote sensing and new technologies

Remote sensing has been used in hydrology for estimating hydrome-

teorological states and fluxes (Kumar & Reshmidevi, 2013). Particu-

larly in páramos, those applications have been related mainly to

precipitation detection, land-use and vegetation cover mapping, and

to evapotranspiration estimation.

Improvements in the spatial–temporal estimation of precipitation

were possible thanks to the identification of the best satellite prod-

ucts, model images (Ballari, Giraldo, Campozano, & Samaniego, 2018;

Manz et al., 2017; Nerini et al., 2015; Ulloa, Ballari, Campozano, &

Samaniego, 2017; Ulloa, Samaniego, Campozano, & Ballari, 2018), the

use of dense and/or extensive rain gauges networks (Manz

et al., 2016; Sucozhañay & Célleri, 2018), and more sophisticated

equipment such as radars and disdrometers (Orellana-Alvear

et al., 2017; Padrón et al., 2015). Precipitation forecasting and projec-

tions use statistical and dynamical downscaling applications

(Campozano, Tenelanda, Sánchez, Samaniego, & Feyen, 2016; Ochoa,

Campozano, Sánchez, Gualán, & Samaniego, 2016) and forecasting of

daily precipitation occurrence (Urdiales & Célleri, 2018). The

RADARNET-SUR was installed to complement an existing sparse rain

gauge network (Bendix et al., 2016; Orellana-Alvear et al., 2017). The

radar successfully detected the relatively low frequency of heavy rain

(particles diameters between 1 and 2 mm) and confirmed the high

occurrence of drizzle. Raindrop size spectra were characterized with

the radar observations, confirming spatial variations across páramos

sites (Orellana-Alvear et al., 2017).

Particularly the use of satellite products in the high mountains

showed that Integrated Multi-satellite Retrievals from GPM (IMERG)

has a superior detection and better ability to estimate quantitative

rainfall than Multi-satellite Precipitation Analysis (TMPA) (Manz

et al., 2017). The latter revealed the existence of different regimes

(unimodal, bimodal, and three-modal) in the páramos and helped to

comprehend the precipitation and cloud dynamics, and generation

processes of precipitation (Campozano, Célleri, Trachte, Bendix, &

Samaniego, 2016). Changes in vegetation cover, a key element of the

hydrological cycle, was detected with the comparison of LANDSAT

and ARDAS satellite images for páramos of Nariño, Colombia (Muñoz-

Guerrero, 2017). Those images helped to observe crop expansion and

how this affected conservation and sustainability of páramos ecosys-

tems (Muñoz, Pencue, Figueroa, & Guzmán, 2018). Landsat and

MODIS sources were further used to assess fires that affect páramos,

their intra- and inter-annual variability and resulting ecological impacts

(Borrelli, Armenteras, Panagos, Modugno, & Schütt, 2015). The same

imagery has also been used to robustly assess spatiotemporal evapo-

transpiration changes in the páramos, in combination with the energy-

balance model METRIC (Carrillo-Rojas et al., 2016). Besides changes

in land cover and land-use, satellite images have allowed the identifi-

cation of páramo wetlands and their changes over time

(Ospina, 2019).

3.3 | Citizen science and participatory monitoring

Long-term monitoring of water quantity and quality is often criticized

for being unaffordable and challenging in low-income and remote

regions (Rufino et al., 2018). However, novel strategies developed in

these regions, with the participation of new actors (e.g., actors with a

non-research oriented profile) in scientific projects, have allowed

effective monitoring. The inclusion of local stakeholders changes the

traditional monitoring approach, from intensive-highly specialized in

experimental sites to a polycentric and collaborative network with

larger spatial coverage and a wider range of data collector profiles

(Buytaert et al., 2014; Buytaert, Dewulf, De Bièvre, Clark, &

Hannah, 2016). Known as citizen science, this participatory monitor-

ing involves the horizontal management of information and massive

distribution of knowledge. It has proven to be an effective tool to

reduce costs while providing hydrological data with sufficient quality

CORREA ET AL. 4617



(Weeser et al., 2018). Citizen science also generates locally relevant

knowledge to tackle the data scarcity in regions such as the tropical

Andes and generating locally relevant knowledge to tackle the data

scarcity in regions such as the tropical Andes (Ochoa-Tocachi

et al., 2018). No such efforts were to the best of our knowledge

reported from Central American páramos.

Regional monitoring networks such as the Regional Initiative for

Hydrological Monitoring of Andean Ecosystems (iMHEA, Célleri

et al., 2009; Ochoa-Tocachi et al., 2018) integrate local users (land

and water users and government offices), academic institutions and

other minor monitoring networks along the tropical Andes, from Ven-

ezuela to Bolivia. iMHEA generates and analyses information about

the impact of land-use changes on the hydrological response of moun-

tain catchments with high spatial and temporal resolution, yet short

time series (Buytaert et al., 2016; Ochoa-Tocachi et al., 2018; Ochoa-

Tocachi, Buytaert, & De Bièvre, 2016). Particularly in páramos, the

network studies watershed interventions and common land-use activ-

ities such as cultivation, grazing, and afforestation with exotic species,

as well as connectivity pathways and effects of land-use to down-

stream users (Ochoa-Tocachi et al., 2018). With this collaborative pro-

ject the authors have been able to detect regional patterns such as

increases in variability of stream flow and decreases in the water yield

of the catchments (Ochoa-Tocachi, Buytaert, & De Bièvre, 2016). The

emerging broad networks of scientific and non-scientific actors pro-

vide opportunities for data collection, generation of knowledge, and

support for sustainable water management policies (Buytaert

et al., 2016).

3.4 | Toward an integrated evidence base to
support sustainable management of páramos

Despite the spatial–temporal variability and complexity of the hydro-

logical processes in páramos, as well as the logistical challenges

imposed by the remote and barren environment, the above review

shows great advances in hydrological knowledge of páramos. This is

exceptional for a remote mountain environment, and arguably

unique in the Andes and Central America. We consider that this

knowledge was gained as a result of the interdisciplinary participa-

tion of actors, combined with the use of well-established methods

and technologies. This has led to the creation of an unwritten “com-

mon agenda,” leading to a focusing of research activities and fos-

tered convergence between seemingly independent research efforts.

The acceleration of hydrological research in the late 1990s coincided

with an increasing awareness of the ecological and societal value of

páramos highlands, notwithstanding páramos provided crucial eco-

system services long before this (Johansen et al., 2018). Indeed,

especially in Ecuador and northern Peru, páramos have been

inhabited for centuries and major centres of the Inca empire were

located in or near páramos border (Bendix et al., 2013). Ingenious

hydraulic infrastructure drew water from páramos headwaters and

used the region for agricultural activities and livestock grazing in par-

ticular. Since the 1970, forestation with pine species became a

widespread activity as an attempt to support the economic activity

of paper production (Bonnesoeur et al., 2019).

However, the most direct ecosystem service of páramos has been

water supply, especially for major Andean cities. Population growth

and related increase in water demand put rising pressure on these

resources as well as an augmenting awareness of their vulnerability

among decision-makers. Despite that Central American páramos are

mostly National Parks and completely protected areas with little to no

land-use change impacts, their ecosystematic value particularly in

terms of water resources remains speculative. In contrast, the city of

Quito in Ecuador, established in 2000 the world's first and most suc-

cessful water fund (FONAG), with the aim to protect and manage the

city's water supply regions. As more than 90% of these regions are

covered by páramos, initiatives like these drew political and scientific

attention to the lack of scientific understanding of their hydrological

functioning and the potential impact of changes in land-use, as well as

global climate change. Throughout its first decade, this focus was

strengthened further by growing evidence of mountain environments

as hot spots of biogeographical and human vulnerability to climate

change (e.g., Myers, Mittermeier, Mittermeier, da Fonseca, &

Kent, 2000; Viviroli et al., 2011). The issue of climate change not only

stressed the need to better understand páramos water cycle, but also

its links to other processes such as the carbon cycle and biodiversity

(Buytaert et al., 2011).

This development shaped a local and international research

agenda which led to a step-change in scientific activity in páramos. In

addition, large scale initiatives on the science-policy interface con-

nected and integrated these efforts. Among those efforts, in the

World Congress on Páramo (2002), the Paipa Declaration was signed,

the Global Environmental Facility funded Proyecto Páramo Andino,

which ran from 2006 to 2012, which stood out because of its role in

building a research community. In 2010, the project initiated the

iMHEA regional network (Célleri et al., 2009; Ochoa-Tocachi,

Buytaert, & De Bièvre, 2016). Such initiatives created a strong con-

nection between the scientific and operational communities. For

example, many recent studies on the spatial–temporal variability of

precipitation processes in the Andes are joint efforts between national

and international meteorological offices and scientists (e.g., Manz

et al., 2017; Nerini et al., 2015). This has led to an accelerated uptake

of the use of satellite-based precipitation products in operational

practice, and an optimization of the monitoring efforts between dif-

ferent research groups. Political decisions to make hydrometeorologi-

cal datasets available for scientific use have further accelerated this

evolution.

The iMHEA started originally as a community of practice of scien-

tists, government institutes, decision-makers and civil society repre-

sentatives. All these actors aimed at understanding the high Andean

water resources and address the critical data scarcity in the region

(Célleri et al., 2009). The network grew until today and manages

27 flow gauging stations and 67 rain gauges in headwater catchments

of the Andes of Ecuador, Peru, and Bolivia. The network is designed

to complement institutional hydrometeorological monitoring, and to

generate evidence on land management practices through a pairwise
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catchment design (Ochoa-Tocachi et al., 2018). In addition, to the sci-

entific productivity the network is creating an institutional legacy as

well. In Peru, the iMHEA methodology has been adopted by the

National Drinking Water and Sanitation Regulation Agency (SUNASS)

to evaluate the implementation of recent laws on ecosystem services.

The mentioned methodology promotes the use of natural infrastruc-

ture for water security.

The exceptional experience of linking evidence generation with

in-situ water management have raised similar convergence between

scientific and policy priorities in other disciplines. The growing aware-

ness of the potentially dramatic impact of climate change on high

mountain regions (e.g., Vuille et al., 2018) has triggered several con-

certed efforts to improve the predictive capacity of GCMs. This has

promoted the development of more appropriate downscaling

methods, the evaluation of the multiple impacts of climate change,

and the development of better and more flexible adaptation strategies

in the tropical Andes. A notable initiative in this regard was the

Andean Climate Change Interamerican Observatory Network

(ACCION), which ran from 2012 to 2014 (Vuille, 2015). Similarly,

research on ecological processes and carbon recycling in páramos

emerged in parallel to hydrological research (e.g., Hofstede, 1995;

Podwojewski et al., 2002; Tonneijck et al., 2010). Interdisciplinary

endeavours to link these processes are becoming increasingly com-

mon (e.g., Minaya et al., 2016). The use of tracer hydrology has been

especially instrumental in analysing the biogeochemical cycles that

underpin and connect these processes (e.g., Correa et al., 2017, 2018;

Esquivel-Hernández et al., 2018; Mosquera, Célleri, et al., 2016).

Lastly, the interdisciplinary research of páramos has advanced

beyond hydrology and ecology to encompass other sciences, particu-

larly social sciences, that show quantitative evidence of the impor-

tance of páramos for water security. Socially relevant research has

been generated to understand how people manage their landscapes,

use their land and water, and produce and incorporate community

and citizen science in their decision making (Buytaert et al., 2014).

The link of the natural sciences with the social sciences for environ-

mental conservation have also resulted in robust analyses. For exam-

ple, hydro-socio-economic studies have started investigating the

economic value of páramo conservation and restoration (Ochoa-

Tocachi, 2019), whereas new theories for water governance have

emerged from the polycentric nature of this ecosystem and the need

to incorporate data from multiple actors and consider power balances

between them (Zogheib et al., 2018).

F IGURE 5 The Zhurucay eco-hydrological observatory located in southern Ecuador: (a) Catchment with sampling stream sites; (b) Hydro-
meteorological monitoring equipment; (c) Disdrometer; (d) Weir at the catchment outlet; (e) Wick sampler installation materials; (f) 2-ml amber
glass bottle, 100-ml polypropylene bottle and filter used for water sampling; (g) Picarro L1102-I analyser and (h) Example of high-resolution
precipitation, discharge and element-concentration from water samples. Photo credits: Alicia Correa and Galo Carrillo
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3.5 | Enhancing hydrological understanding at local
scale: Densely monitored field observatories to
understand the hydrological functioning of headwater
catchments

One example of an integrated field observatory is the iDRHICA site

established in 2010 by University of Cuenca, Ecuador. This eco-

hydrological observatory (7.5 km2) is located the in southern Ecuador-

ian Andes (Figure 5) in an altitudinal range between 3,505 and

3,900 m a.s.l. Two types of soils, Histosols (20%) and Andosols (80%)

mainly covered by grassland and cushion plants respectively dominate

the catchment. This observatory is densely monitored, hydro-meteo-

rologically: a weather station, a spatially distributed network of tilting

bucket rain gauges and a nested system of discharge stations. In addi-

tion, a laser disdrometer and an Eddy-covariance flux tower have

been placed at the study site. Water samples are collected for stable

isotope, carbon, nutrient and element concentration analyses, periodi-

cally and during intensive campaigns in streams, precipitation and

soils. Being an intensive and highly specialized research site, the find-

ings built a strong eco-hydrological knowledge, which can be summa-

rized as follows:

Fog and drizzle common in the region (Buytaert, Célleri,

et al., 2006) accounted for an additional amount of 15% of precipita-

tion (Padrón et al., 2015). Interception losses represented a high per-

centage of precipitation and the canopy storage capacity of grassland

was approximately 2 mm (Ochoa-Sánchez et al., 2018). The key role

of air moisture variation in the control of the hydrological system was

as well reported by Carrillo-Rojas et al. (2019). Streamflow showed to

be dominated by water inflows from the riparian zone (mainly occu-

pied by Histosols soils) year-round and the contribution from

hillslopes (where primarily Andosols soils are located) was relevant

during the wet season (Correa et al., 2017; Mosquera, Célleri,

et al., 2016). Costa Rican páramos were also characterized by organic-

rich and water-logged, but shallower soils compared to Andean sites

(Kapelle & Uffelen, 2005). The age of water from the streams varies

between 2 and 9 months (Mosquera, Segura, et al., 2016) and

decreased when connectivity to the hillslopes existed (Correa

et al., 2017). Rainfall-runoff event-based sampling showed slower

connectivity with hillslopes in the lower in relation with the upper

sub-catchments (Correa et al., 2018). The dynamic storage of the

catchment increases with rainfall intensity, while the passive storage

with larger wetlands extent. Less than 10% of passive storage is

hydrologically active in the water balance (Lazo, Mosquera,

McDonnell, & Crespo, 2019). The carbon source behaviour of pár-

amos was evidenced by a net positive exchange of CO2 (Carrillo-Rojas

et al., 2019). In a nearby comparable catchment, increasing of DOC

concentrations while decreasing soil moisture were reported and

land-use and land cover identified as key predictors of soil water DOC

concentrations (Pesántez et al., 2018). In comparison, Central Ameri-

can páramos are still severely understudied and research mostly

focused on ecological inventories and paleoclimate studies (Kapelle &

Uffelen, 2005). Only recently, Esquivel-Hernández et al. (2018, 2019)

initiated more detailed hydrology research in Costa Rican páramos.

3.6 | Enhancing hydrological understanding at
regional scale: Integrating research toward a regional
understanding and predictions in ungauged basins

The large body of data and knowledge generated in a few experimen-

tal highly monitored sites in the South American páramos provide a

starting point to generalize findings to a larger area in which water

resources are used and managed. Recently, a regional study by

Esquivel-Hernández et al. (2019) compared the moisture origin of

rainfall in Ecuadorian and Costa Rican páramos systems based on sta-

ble isotope data demonstrating the potential for regionalization. Fur-

ther, to prove the usefulness of pooling data from monitored sites for

streamflow predictions in ungauged basins, Ochoa-Tocachi, Buytaert,

and De Bièvre (2016) used data from the iMHEA network of paired,

collocated catchments with contrasting land-use types, to detect

land-use change signals and thus the prediction of land-use impacts

on the hydrological response of ungauged basins. The approach

regionalizes a set of hydrological indices using multilinear regressions

with physical and climate descriptors (Figure 6).

The regression results showed that regionalization using paired

catchments enhances the detectability of land-use change impacts

improving model performance and predictive capacity for 66% of the

50 indices tested (Ochoa-Tocachi, Buytaert, & De Bièvre, 2016), in

contrast to previous research elsewhere in the world that found it dif-

ficult to isolate land-use signals in regionalization (e.g., Visessri &

McIntyre, 2016). This demonstrates that a monitoring network is a

useful strategy to optimize data collection, provide commonly avail-

able geographical information, understand the major controls of

hydrological response, and provide robust predictions in ungauged

basins in data-scarce regions such as the tropical Andes, with poten-

tial application elsewhere.

4 | CONCLUDING REMARKS

Hydrological understanding of the Latin American páramos improved

dramatically over the last decades, being the result of increasing inter-

action between scientists, local and regional stakeholders. Two ten-

dencies are noticeable in the developed research structure, one

regional with more non-scientific actors and decision-makers involved

and a second in small densely monitored experimental sites where

mostly-scientist and academics are involved. Furthermore, interna-

tional cooperation initiatives succeeded in creating a community-

based strong connection between the scientific and operational com-

munities. Within these initiatives, multidisciplinary research projects

used innovative approaches to collect and process information, and to

generate knowledge at regional level. Others in experimental sites

generated strong hydrological knowledge with great detail and high

resolution. Ideally, this knowledge could be regionalized to non-

monitored sites to amplify the benefit.

The progress of research in páramos, once one of the least stud-

ied regions in the world, is a regional and global reference due the fast

development of research. With 880 scientific publications from 2001
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to date a development of knowledge is evident. Increased investment

in research, technology and specialized equipment has allowed the

generation of long-needed information and research milestones for

robust understanding and management of water resources in the

region. However, the latter is strictly not the case for the Central

American páramos, which are in comparison to Andean páramos still

mostly understudied. Albeit smaller in spatial extent, they provide the

same but unquantified water resources to downstream communities.

We therefore urgently encourage the research community to par-

ticipate in projects that provide insights into the global change that

occurs in these fragile ecosystems. Under the current context of cli-

mate change, it becomes important to analyse its impact on the inter-

relations and synergies of social biophysical and hydroclimatic

conditions. We urge the scientific community to complement the

challenge of long-term data collection, incursion into lumped and spa-

tially distributed modelling to represent and transfer eco-hydrological

processes knowledge to poorly monitored areas, as well as to consider

the non-stationary nature of those processes. Finally, we encourage

the community to continue collaborating and establishing new inter-

national cooperation initiatives. All this to generate long-term man-

agement strategies and ensure the socio-economic development

without compromising hydrological and ecosystem resources.
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