
Hydrol. Earth Syst. Sci., 23, 5059–5068, 2019
https://doi.org/10.5194/hess-23-5059-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technical note: Uncertainty in multi-source partitioning
using large tracer data sets
Alicia Correa1,2, Diego Ochoa-Tocachi3, and Christian Birkel1,4

1Department of Geography and Water and Global Change Observatory, University of Costa Rica, San José, 2060, Costa Rica
2Institute for Applied Sustainability Research (iSUR), Quito, 170503, Ecuador
3Department of Mathematics, Universidad San Francisco de Quito, Quito, 170901, Ecuador
4Northern Rivers Institute, University of Aberdeen, Aberdeen, AB24 3UF, UK

Correspondence: Alicia Correa (alicia.correa@ucr.ac.cr)

Received: 27 April 2019 – Discussion started: 21 May 2019
Revised: 25 October 2019 – Accepted: 30 October 2019 – Published: 16 December 2019

Abstract. The availability of large tracer data sets opened
up the opportunity to investigate multiple source contribu-
tions to a mixture. However, the source contributions may
be uncertain and, apart from Bayesian approaches, to date
there are only solid methods to estimate such uncertainties
for two and three sources. We introduce an alternative uncer-
tainty estimation method for four sources based on multiple
tracers as input data. Taylor series approximation is used to
solve the set of linear mass balance equations. We illustrate
the method to compute individual uncertainties in the calcu-
lation of source contributions to a mixture, with an example
from hydrology, using a 14-tracer set from water sources and
streamflow from a tropical, high-elevation catchment. More-
over, this method has the potential to be generalized to any
number of tracers across a range of disciplines.

1 Introduction

Tracer applications have dramatically increased over re-
cent years across a wide range of disciplines (West et al.,
2010). Applications in hydrology (Hooper, 2003; James and
Roulet, 2006; Kirchner and Neal, 2013), ecology (Phillips
and Gregg, 2003; Semmens et al., 2009b), anthropology
(Ehleringer et al., 2008), conservation biology (Bicknell et
al., 2014), nutrition (Magaña-Gallegos et al., 2018), environ-
mental and ecosystem science (Bartov et al., 2013; Granek et
al., 2009), and erosion and sediment transportation (Davies
et al., 2018) have been the most prominent. Such widespread
use of tracers was mainly facilitated by the availability of an-

alytical techniques that provide highly sensitive, rapid multi-
element analysis at a lower cost (Falkner et al., 1995). For
example, the use of inductively coupled plasma mass spec-
trometry (ICP-MS) as one of the most relevant analytical
techniques for elemental analysis (Helaluddin et al., 2016)
led to the availability and use of large tracers sets (elements)
in hydrological studies (Barthold et al., 2017; Belli et al.,
2017; Correa et al., 2017; Kirchner and Neal, 2013; Mimba
et al., 2017). Trace elements together with water stable iso-
topes (cavity ringdown laser absorption spectroscopy paved
the way: Berman et al., 2009; Lis et al., 2008) as well as
physical–chemical water parameters (e.g. electrical conduc-
tivity and pH) are now often used to improve understanding
of hydro-geochemical cycles, flow pathways and runoff gen-
eration in hydrology. Furthermore, mixing models based on
tracer mass balance equations are widely applied to identify
the dominant sources of a mixture and their contribution dy-
namics.

In hydrological mixing models, the composition of the
stream is assumed to be an integrated mixture of signatures
of different sources (Christophersen et al., 1990). The pro-
portional contributions of n+ 1 sources to the stream can
be uniquely determined using n different tracers (Christo-
phersen and Hooper, 1992). Bayesian methods have been de-
veloped to identify multiple (> 3) sources and compute their
contributions to a mixture in a two-dimensional mixing space
(Parnell et al., 2010; Stock et al., 2018). In this case, a unique
solution is not feasible and a higher uncertainty is attributed
to the model (Phillips and Gregg, 2001, 2003). On the other
hand, end-member mixing analysis (EMMA) (Hooper, 2003)
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was developed to use multiple tracers as input and, there-
fore, allows for a multi-dimensional space that potentially
increases the number of identifiable sources (Barthold et al.,
2011; Inamdar et al., 2013; Liu et al., 2004). In addition,
the use of multiple tracers can avoid bias and subjectivity
in the input information. Therefore, EMMA provides a ro-
bust and complete conceptualization of catchment function-
ing and source interactions during runoff generation (Iwasaki
et al., 2015). However, despite its benefits, the EMMA ap-
proach lacks a formal methodology to assess the uncertainty
of multiple end-members (Delsman et al., 2013) and their
individual uncertainties in the calculation of source contribu-
tions to a stream.

To our knowledge, the uncertainty estimation of source
contributions to streams is based on Gaussian error propaga-
tion (Genereux, 1998) and was so far only calculated using
one or two tracers simultaneously (MixSIAR: Parnell et al.,
2010; Phillips and Gregg, 2001; Semmens et al., 2009a). Al-
ternatively, when the number of sources is higher, the uncer-
tainty is usually based on the sum of analytical errors, eleva-
tion effects and the spatial variability of end-member concen-
trations (Uhlenbrook and Hoeg, 2003). Hence, we propose
an alternative methodology based on the first-order Taylor
series approximation to estimate the uncertainty of individ-
ual end-members or sources (e.g. precipitation, soil water,
groundwater) to a mixture (e.g. streamflow).

We illustrate this application using a multi-tracer data set
from Correa et al. (2019b), in a three-dimensional space de-
fined by a principal component analysis (PCA). In Correa et
al. (2019b), the authors computed the uncertainties but with-
out disclosing any details in the calculation and methodology
used. The main objective of this technical note is, therefore,
to explicitly describe the mathematical development that al-
lows the calculation of partial derivatives, degrees of free-
dom and confidence interval limits for each source fraction
contribution and, moreover, to provide the code and several
examples for their calculation and reproducibility.

2 Uncertainty estimation method development

In this section, the uncertainty estimation method presented
in Phillips and Gregg (2001) is expanded for four source con-
tributions to the mixture.

Let C represent the following set of sources: A, B, C and
D, and mixture M , C = {A,B,C,D,M}. In the following
equations, x ∈ C, y ∈

{
δ,λ,φ

}
and z ∈ {A,M,C}. x, y and z

are variables that belong to the following sets: x to the set of
A, B, C, D and mixture M; y to the set of medians of every
projected source and mixture in each principal component
δλφ respectively of the sub index used; and z to the set of
A, M and C. Furthermore, fA,fB ,fC and fD represent the
contribution fraction of sources A, B, C and D respectively
to the mixture M .

The data required for this analysis are the median and stan-
dard deviations (σ ) of each of the sources (A, B, C and D)
and the mixture M , projected and expressed in the coordi-
nates of the three-dimensional PCA space. As well as this,
the sample size (n) of each source is required. Details of the
application are presented in Sect. 3.2.

If the system is composed of Eq. (1)
δAfA + δBfB + δCfC + δDfD = δM
λAfA + λBfB + λCfC + λDfD = λM
φAfA + φBfB + φCfC + φDfD = φM
fA + fB + fC + fD = 1

(1)

and has solution1 for fAfBfCfD > 0, the contribution frac-
tions take the following form:

fA =
(8M −1M )(3C −1C)− (3M −1M )(8C −1C)

(8A−1A)(3C −1C)− (3A−1A)(8C −1C)

=
Num
Den

,

fC =
(1M −3M)− (1A−3A)fA

(1C −3C)
,

fB =1M − (1CfC +1AfA) ,

fD = 1− (fC + fB + fA) , (2)

where

1x =
δx − δD

δB − δD
, 3x =

λx − λD

λB − λD
,

8x =
φx −φD

φB −φD
. (3)

The partial derivatives of Eq. (2) are given by

∂fA

∂yx
=

1
Den2

[[
(3C −1C)

(
∂8M

∂yx
−
∂1M

∂yx

)
+ (8M −1M)

(
∂3C

∂yx
−
∂1C

∂yx

)
− (8C −1C)

(
∂3M

∂yx
−
∂1M

∂yx

)
− (3M −1M)

(
∂8C

∂yx
−
∂1C

∂yx

)]
Den

−

[
(3C −1C)

(
∂8A

∂yx
−
∂1A

∂yx

)
+ (8A−1A)

(
∂3C

∂yx
−
∂1C

∂yx

)
− (8C −1C)

(
∂3A

∂yx
−
∂1A

∂yx

)
− (3A−1A)

(
∂8C

∂yx
−
∂1C

∂yx

)]
Num

]
,

1The system has a solution if the vector of mixture M is on the
polyhedron generated by the vectors of sources A, B, C andD such
that

∑
x
fx = 1.
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∂fC

∂yx
=

1

(1C −3C)
2

[[(
∂1M

∂yx
−
∂3M

∂yx

)
−

(
∂1A

∂yx
−
∂3A

∂yx

)
fA− (1A−3A)

∂fA

∂yx

]
(1C −3C)

−

(
∂1C

∂yx
−
∂3C

∂yx

)[
(1M −3M )− (1A−3A)fA

]]
,

∂fB

∂yx
=
∂1M

∂yx
−
∂1C

∂yx
fC −1C

∂fC

∂yx
−
∂1A

∂yx
fA

−1A
∂fA

∂yx
,

∂fD

∂yx
=−

∂fC

∂yx
−
∂fB

∂yx
−
∂fA

∂yx
. (4)

It is trivial that

∂1z

∂wx
= 0, w ∈

{
λ,φ

}
;
∂3z

∂wx
= 0, w ∈

{
δ,φ

}
;

∂8z

∂wx
= 0, w ∈

{
δ,λ

}
, (5)

where

∂1z

∂δx
=
(
δB − δD

)−1


1 z ∈ {A,C,M} and x = z
−1z z 6= B and x = B
1z− 1 z 6=D and x =D
0 otherwise

, (6)

∂3z

∂λx
=
(
λB − λD

)−1


1 z ∈ {A,C,M} and x = z
−3z z 6= B and x = B
3z− 1 z 6=D and x =D
0 otherwise

(7)

and

∂8z

∂φx
=
(
φB −φD

)−1


1 z ∈ {A,C,M} and x = z
−8z z 6= B and x = B
8z− 1 z 6=D and x =D
0 otherwise

. (8)

For example, for fA we have

∂fA

∂δx
=

1
Den2

[[
∂1M

∂δx
(8C −3C)

−
∂1C

∂δx
(8M −3M)

]
Den−

[
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−
∂1C

∂δx
(8A−3A)

]
Num

]
,

∂fA

∂λx
=

1
Den2
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∂3C

∂λx
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−
∂3M

∂λx
(8C −1C)

]
Den−

[
∂3C
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(8A−1A)

−
∂3A

∂λx
(8C −1C)

]
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]
,

∂fA

∂φx
=

1
Den2

[[
∂8M

∂φx
(3C −1C)

−
∂8C

∂φx
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]
Den−

[
∂8A
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−
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]
. (9)

Using Eq. (9), the first-order Taylor series approximation
(Taylor, 1982) for the variance (σ 2) of fA evaluated at the
mean can be calculated by

σ 2
fA
=

∑
x

(
∂fA

∂δx

)2

σ 2
δx
+

∑
x

(
∂fA

∂λx

)2

σ 2
λx

+

∑
x

(
∂fA

∂φx

)2

σ 2
φx
=

∑
y

∑
x

(
∂fA

∂yx

)2

σ 2
yx
. (10)

To calculate γA (the Satterthwaite, 1946, approximation

for the degrees of freedom), we define fAyx = cA
(
∂fA
∂yx

)2
,

where cA is a scale constant that relates fAyx with the re-
spective derivative. It means that fA with respect to yx can
be a scalar multiple of the derivative value.

In this case, we get

γA =

(∑
y

∑
x

fAyxσ
2
yx

)2

∑
y

∑
x

(
fAyx σ

2
yx

)2

nyx−1

. (11)

Note that whatever the value of cA is, Eq. (11) leads to

γA =

(∑
y

∑
x

(
∂fA
∂yx

)2
σ 2
yx

)2

∑
y

∑
x

((
∂fA
∂yx

)2
σ 2
yx

)2

nyx−1

,

and if we set f ∗Ayx =
(
∂fA
∂yx

)2
then the numerator of the last

equation can be replaced by
(
σ 2
fA

)2
. In other words, we can

use Eq. (10) and the derivatives Eq. (9) to estimate the value
of γA, resulting in fAyx = cAf

∗

Ayx
. Of course, it is required

that cA is constant with respect to yx . Then,

γA =

(
σ 2
fA

)2

∑
y

∑
x

((
∂fA
∂yx

)2
σ 2
yx

)2

nyx−1

. (12)
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Let w ∈ Cr {A}. The first-order Taylor series approxima-
tion for the variance of fw can be calculated by (as above
Eq. 10)

σ 2
fw
=

∑
x

(
∂fw

∂δx

)2

σ 2
δx
+

∑
x

(
∂fw

∂λx

)2

σ 2
λx

+

∑
x

(
∂fw

∂φx

)2

σ 2
φx
=

∑
y

∑
x

(
∂fw

∂yx

)2

σ 2
yx
. (13)

If we construct γw as γA, we get

γw =

(∑
y

∑
x

f ∗wyxσ
2
yx

)2

∑
y

∑
x

(
f ∗wyx σ

2
yx

)2

nyx−1

,

where fwyx = cwf
∗
wyx

and f ∗wyx =
(
∂fw
∂yx

)2
with cw constant

with respect to yx , then we finally get

γw =

(
σ 2
fw

)2

∑
y

∑
x

((
∂fw
∂yx

)2
σ 2
yx

)2

nyx−1

. (14)

The upper and lower confidence interval limits for each
end-member fraction can be calculated using partial deriva-
tives and the 95 % confidence intervals constructed as fol-
lows:

fw ± t0.05γwσfw, (15)

where t0.05,γ is the Student’s t for α = 0.05 (two-tailed)
(Walpole et al., 2017) and γ degrees of freedom related with
σfw.

3 Application

3.1 Study site and data

This methodology was tested using data from a high-
elevation (3500–3900 m a.s.l.) tropical catchment (7.53 km2)
located in southern Ecuador (3◦4′38′′ S, 79◦15′30′′W). The
mean annual precipitation for this study site is 1300 mm
(Padrón et al., 2015), the mean annual discharge is
860 mm yr−1. The catchment is of a volcanic origin and
dominated by volcanic Histosol (24 %) and Andosol (72 %)
soils (Quichimbo et al., 2012), both with a high percentage
of organic matter content (450 and 310 g kg, respectively)
(Quichimbo et al., 2012) and large water-holding capacities
(Buytaert et al., 2006). Histosols are primarily located at the
valleys and covered by cushion plants, while Andosol soils
are predominant on the hillslopes under a cover of tussock

Figure 1. Three-dimensional mixing space generated using stream
data, where the median of end-members are projected. U1 repre-
sents 59.6 % of the variance,U2 19.7 % andU3 7.4 % (From PCA);
RF: rainfall; AN: Andosols; HS: Histosols; SW: spring water; M:
the median of stream data (mixture).

Table 1. Median and standard deviation (SD) of end-members and
stream projected in three-dimensional space for the study period
2013–2014.

End-member Coordinates∗ Naming in

U1 U2 U3 equations

SW (n= 25) median 26.25 7.29 7.00 A

SD 0.46 0.36 0.39

HS (n= 33) median 0.23 5.48 1.97 B

SD 0.85 1.29 0.69

AN (n= 37) median −2.24 −3.93 3.71 C

SD 0.55 0.58 0.45

RF (n= 36) median −5.38 −6.10 −4.84 D

SD 0.27 0.56 0.15

Stream (n= 257) median −0.61 −1.04 0.94 M

SD 2.06 1.10 0.66

∗ Coordinates of end-members and stream (mixture) medians in three-dimensional
space (U1, U2 and U3). n represents the sample size.

grass. Nearly saturated conditions of the riparian zone are
observed year-round, and a spring is located in the north-
western part of the catchment. Streamwater samples from
five nested streams were collected weekly from March 2013
to April 2014 (n= 257) and at a higher frequency during ex-
perimental campaigns. Additionally, bi-weekly water sam-
ples from four potential end-members, rainfall (RF), soil wa-
ter from Andosols (AN) and Histosols (HS), and spring wa-
ter (SW) (n∼ 30, for each end-member) were collected. A
multi-tracer (14 tracers) data set of conservative tracers was
obtained from each water sample (Na, Mg, Al, Si, K, Ca,
Rb, Sr, Ba, Ce, V, Y, Nd) at the Institute for Landscape Ecol-
ogy and Resource Management of the Justus Liebig Univer-
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Figure 2. Boxplots of end-members projected in the three-dimensional mixing space for the study period 2013–2014. The y axis represents
the coordinates of the mixing space and the x axis the principal components U1, U2 and U3 (the central bar in the box represents the median;
notches represent the 95 % confidence intervals; whiskers 1.5 times the interquartile range and circles represent outliers). SW: spring water;
HS: Histosol; AN: Andosol; RF: rainfall.

Table 2. Median and standard deviation (SD) of end-members and stream projected in three-dimensional space considering 50 % of the data
sets.

Naming in (1) End Coordinates∗ (2) End Coordinates∗

equations member U1 U2 U3 member U1 U2 U3

A median SW 26.18 7.29 6.66 SW 26.28 7.29 7.1
SD (n= 12) 0.34 0.39 0.48 (n= 13) 0.51 0.36 0.21

B median HS 0.23 5.41 1.87 HS 0.28 5.9 2.26
SD (n= 17) 0.74 1.19 0.52 (n= 17) 0.96 1.33 0.74

C median AN −2.37 −3.93 3.69 AN −2.2 −3.94 3.89
SD (n= 19) 0.59 0.4 0.49 (n= 19) 0.46 0.73 0.41

D median RF −5.37 −6.26 −4.78 RF −5.35 −5.99 −5.01
SD (n= 18) 0.26 0.58 0.07 (n= 18) 0.28 0.53 0.15

M median Stream −0.61 −1.04 0.94 Stream −0.61 −1.04 0.94
SD (n= 257) 2.06 1.10 0.66 (n= 257) 2.06 1.10 0.66

The example (1) considers the initial 50 % and (2) the remaining 50 % of the sample sets. ∗ Coordinates of end-members and stream (mixture) medians in
three-dimensional space (U1, U2 and U3). n represents the sample size.

sity using an ICP-MS (Agilent 7500ce, Agilent Technolo-
gies) and the electrical conductivity (EC) was measured in
situ. More detailed information on the study site and data set
can be found in Correa et al. (2017, 2019b).

3.2 Uncertainty estimation of water source
contributions

Using the classic EMMA approach (Christophersen and
Hooper, 1992), data from end-members SW, HS, AN, RF
and stream M were projected into a three-dimensional space
(Correa et al., 2019b) and presented in Fig. 1. The resulting
median and standard deviation of end-members and stream
coordinates are shown in Table 1. Furthermore, Fig. 2 shows
the distribution of projected samples from individual end-
members in the PCA coordinates.

The uncertainty range of each of the four end-member
contributions to the stream was determined using the above
developed Eq. (15) based on the first-order Taylor series

approximation (Eq. 14) (MATLAB code in Correa et al.,
2019a). The fw gives the proportion of w in M and σ 2

fw
gives the variances of w. The upper uncertainty limit was
computed as fw + t0.05,γ σfw and the lower limit as fw −
t0.05,γ σfw. This procedure was applied to all end-members.
The resulting uncertainty estimates for each source end-
member are shown in Table 5.

Note that the set of sources A, B, C andD used for the de-
velopment of the equations are represented here by SW, HS,
AN and RF in this specific order. U1, U2 and U3 represent
the principal components PC1, PC2 and PC3, respectively.

3.3 Sensitivity of water source uncertainty to input
data

From the above-mentioned data set, we have generated six
examples to assess the sensitivity of the uncertainty calcula-
tion to the source sample size, the artificial inclusion of out-
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Table 3. Median and standard deviation (SD) of end-members and stream projected in three-dimensional space including artificial outliers.

Naming in (3) End Coordinates∗ (4) End Coordinates∗

equations member U1 U2 U3 member U1 U2 U3

A median SW 26.25 7.3 7.02 SW 26.21 7.29 6.95
SD (n= 26) 5.51 1.73 1.68 (n= 26) 10.28 2.87 2.54

B median HS 0.27 5.47 1.98 HS 0.23 5.45 1.97
SD (n= 34) 0.99 2.45 1.03 (n= 34) 1.12 1.99 0.8

C median AN −2.24 −3.92 3.79 AN −2.26 −3.95 3.74
SD (n= 38) 0.78 1.17 0.92 (n= 38) 1.07 1.43 1.15

D median RF −5.36 −6.08 −4.84 RF −5.37 −6.11 −4.86
SD (n= 37) 1.7 1.89 1.58 (n= 37) 1.09 1.42 0.94

M median Stream −0.61 −1.04 0.94 Stream −0.61 −1.04 0.94
SD (n= 257) 2.06 1.10 0.66 (n= 257) 2.06 1.10 0.66

The example (3) considers outliers included at the positive extreme of the data set of each source and (4) outliers included at the negative extreme.
∗ Coordinates of end-members and stream (mixture) medians in three-dimensional space (U1, U2 and U3). n represents the sample size.

Table 4. Median and enlarged standard deviation (SD) of end-members and stream projected in three-dimensional space.

Naming in (5) End Coordinates∗ (6) End Coordinates∗

equations member U1 U2 U3 member U1 U2 U3

A median SW 26.25 7.29 7.00 SW 26.25 7.29 7.00
SD (n= 25) 1.39 1.07 1.19 (n= 25) 2.32 1.78 1.99

B median HS 0.23 5.48 1.97 HS 0.23 5.48 1.97
SD (n= 33) 2.56 3.87 2.06 (n= 33) 4.27 6.45 3.43

C median AN −2.24 −3.93 3.71 AN −2.24 −3.93 3.71
SD (n= 37) 1.65 1.73 1.34 (n= 37) 2.75 2.88 2.24

D median RF −5.38 −6.10 −4.84 RF −5.38 −6.10 −4.84
SD (n= 36) 0.8 1.69 0.46 (n= 36) 1.34 2.81 0.77

M median Stream −0.61 −1.04 0.94 Stream −0.61 −1.04 0.94
SD (n= 257) 2.06 1.10 0.66 (n= 257) 2.06 1.10 0.66

The example (5) considers 3 times the standard deviation of the original data set and (6) 5 times the standard deviation of the original data set. ∗ Coordinates
of end-members and stream (mixture) medians in three-dimensional space (U1, U2 and U3). n represents the sample size.

Table 5. Uncertainty of individual end-member contributions to the
stream and Satterthwaite (1946) approximation for the degrees of
freedom calculated for the study period 2013–2014.

Naming in equations A B C D

End-member SW HS AN RF

Fraction of end-member contribution 0.06 0.3 0.35 0.29
Upper 95 % confidence limit 0.21 0.57 0.58 0.46
Lower 95 % confidence limit 0.00 0.03 0.12 0.12
Degrees of freedom 291 536 749 628

liers (upper and lower extremes) and the increased standard
deviations of the source data sets.

The first example considers 50 % of the samples (collected
in the first half of the monitoring period) from each source.
The median, standard deviation and sample size are input
data (Table 2) to calculate the uncertainty bands (Table 6).

The second example considers the remaining 50 % of the
samples and was similarly executed (Table 2).

In the third example, outliers were artificially included at
the upper positive end of data sets for each source at each
coordinate, respectively. The outliers consisted of twice the
maximum positive value of the observed data (Table 3).

Using the same criteria, the negative extremes were in-
cluded in the fourth example (Table 3).

Sources affected by dispersed data clouds were taken into
account by an increase in the standard deviation. We consid-
ered two cases, the first, in example five, increasing 3 times

Hydrol. Earth Syst. Sci., 23, 5059–5068, 2019 www.hydrol-earth-syst-sci.net/23/5059/2019/



A. Correa et al.: Technical note: Uncertainty in multi-source partitioning 5065

Table 6. Uncertainty of individual end-member contributions to the stream and Satterthwaite (1946) approximation for the degrees of freedom
computed considering 50 % of the data sets.

Naming in equations (1) A B C D (2) A B C D

End-member SW HS AN RF SW HS AN RF

Fraction of end-member contribution 0.06 0.3 0.35 0.28 0.06 0.28 0.35 0.3
Upper 95 % confidence limit 0.21 0.57 0.58 0.45 0.21 0.55 0.58 0.46
Lower 95 % confidence limit 0.00 0.03 0.12 0.11 0.00 0.02 0.12 0.14
Degrees of freedom 289 493 676 589 288 491 679 537

The example (1) was computed considering the initial 50 % and (2) the remaining 50 % of the sample sets.

Table 7. Uncertainty of individual end-member contributions to the stream and Satterthwaite (1946) approximation for the degrees of freedom
computed after including artificial outliers.

Naming in equations (3) A B C D (4) A B C D

End-member SW HS AN RF SW HS AN RF

Fraction of end-member contribution 0.06 0.3 0.35 0.29 0.06 0.3 0.35 0.29
Upper 95 % confidence limit 0.22 0.62 0.64 0.5 0.22 0.61 0.63 0.49
Lower 95 % confidence limit 0.00 0.00 0.06 0.08 0.00 0.00 0.07 0.08
Degrees of freedom 350 448 640 529 353 554 757 621

The example (3) was computed after including outliers at the positive extreme of the data set and (4) including outliers at the negative extreme.

Table 8. Uncertainty of individual end-member contributions to the stream and Satterthwaite (1946) approximation for the degrees of freedom
computed with enlarged standard deviations.

Naming in equations (5) A B C D (6) A B C D

End-member SW HS AN RF SW HS AN RF

Fraction of end-member contribution 0.06 0.3 0.35 0.29 0.06 0.3 0.35 0.29
Upper 95 % confidence limit 0.23 0.68 0.69 0.52 0.26 0.83 0.83 0.61
Lower 95 % confidence limit 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00
Degrees of freedom 372 225 362 312 335 122 211 172

The example (5) was computed considering 3 times the standard deviation of the original data set and (6) 5 times the standard deviation of the
original data set.

the value of the standard deviation of the initial data set (Ta-
ble 4) and finally, increasing the standard deviation 5 times
for the sixth example (Table 4).

The results of this analysis are presented in Tables 6–8. In
examples 1 and 2 the sample size reduction from 24 to 12 and
13 samples respectively (Table 6) had a minimal effect (less
than 3 %) on the calculation of the uncertainty ranges com-
pared to the original complete set (Table 1). The fractions of
source contributions did not experience changes. The inclu-
sion of outliers affected the values of the medians at levels of
the second decimal (Table 3) concerning the median of the
initial data (Table 2). However, the standard deviations in-
creased in a range of 1.2 to 2.5 times the original value for
AN and HS, and more for RF (2.5 to 10.5) and drastically
more for SW (4 to 20 times wider). These variations were
reflected in the widening (1 % to 12 %) of uncertainty bands
for all existing cases (Table 7) in comparison with those cal-

culated from the original data set (Table 5). Furthermore, the
widening of the standard deviations to 3 and 5 times their ini-
tial values resulted in an increase in the range of uncertainty
between 2 % and 22 % for the first case and between 5 % and
37 % for the second case. For the latter, the minimum limit of
the uncertainty range was reached in all the reported cases.
The large number of samples used in these exercises was re-
flected in high degrees of freedom.

4 Summary and remarks

Our methodology was developed to calculate the contribu-
tion of sources to the mixture and its associated uncertainty
(based on multiple tracer sets) and was shown to be effective
in real application cases. The application of the method re-
flected that the calculations of the uncertainty ranges of mul-
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tiple source contributions to a mixture do not experience sig-
nificant changes with sample size reduction or inclusion of
outliers. Rather, it shows marginally different results by in-
corporating standard deviations from widely dispersed data.

The methodology, based on Phillips and Gregg (2001)
combined with EMMA applications (Hooper, 2003) presents
high potential for use as an alternative method to the simple
sum of analytical errors (Uhlenbrook and Hoeg, 2003) or the
Bayesian approach (Parnell et al., 2010; Stock et al., 2018).
We provide a tool to close the gap in studies of mixing pro-
cesses when a larger number of source contributions (> 3)
and related uncertainty estimates are needed for a more com-
plete conceptualization (Iwasaki et al., 2015).

The MATLAB code provided and the illustrative examples
facilitate the understanding of the methodology and promote
future scientific applications. We are confident that the use
of this methodology will help the scientific community that
is increasingly using large tracer sets in its research to obtain
results supported by a sound uncertainty analysis.

Code and data availability. A MATLAB code to calculate the frac-
tions of end-member contribution to the mixture and their associ-
ated uncertainties is freely available at https://zenodo.org/record/
3518700 (last access: 5 November 2019; Correa et al., 2019a), as
well as input data (used in this study) as an example for the code
run and an instruction note.
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