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Land cover change induced sediment transport behaviour in a large tropical Mexican 
catchment
Mayrén Alavez-Vargas a,b,c, Christian Birkel a,d, Aarón Coronae and José Agustín Breña-Naranjob,c
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Jiutepec, Mexico; dDepartment of Geography and Water and Global Change Observatory, University of Costa Rica, San José, Costa Rica; eInstituto de 
Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Mexico City, Mexico

ABSTRACT
The cause–effect relationship and rates of change of suspended sediment dynamics at catchment scales 
in the tropics remain poorly understood. This study used a chrono-sequence of remotely sensed land use 
and historical hydrometric data from 1985 to 2001 in three tropical streams of Mexico to analyse the 
temporal dynamics of land-use change and measured suspended sediment behaviour. The variations in 
measured suspended sediment concentrations (SSC) were related to land cover change using trend and 
hysteresis analysis. No statistically significant trends (p > 0.1) at a monthly scale were associated with the 
historical trajectories of stream sediment fluxes. However, intra-annual hysteresis allowed us to identify 
the climatic seasonality as a main driver for the discharge-sediment loops and to infer sediment source 
variations, related to land cover changes over time. The land cover change analysis, combined with 
statistical tests and hysteresis, was useful to identify temporal and spatial variations in sediment source 
dynamics.
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Introduction

Over the last decade, reforestation efforts worldwide have 
slowed land cover changes (FAO 2011). However, Latin 
America and the Caribbean region represent the highest net 
forest loss in the world, with an annual forest cover change rate 
of −0.46% between 2000 and 2010, equivalent to more than 3 
times the average global rate (−0.13%) for the same period 
(FAO 2011). In the case of Mexico, the annual forest loss 
amounts to 0.30%, with up to 1% for primary forests 
(Blackman et al. 2018).

Both the land use and land cover changes (LULCC) result 
directly from human intervention (Velázquez et al. 2002, 
Wohl et al. 2012), and in tropical countries concerns are 
related to the limited knowledge available about their impacts 
on soil and water quality at the catchment scale. In the 
context of Mexico, a typical sequence of conversion from 
forests to agriculture and pasture and subsequently to urba
nization has been observed (Torres-Rojo et al. 2016). Derived 
impacts from LULCC such as the increase in soil erosion and 
runoff are critical for environmental management in Mexico, 
since more than two-thirds of its territory are currently 
affected by some degree of water erosion and soil loss 
(Bolaños-González et al. 2016).

Research addressing sediment origin and transport 
increased recently, based on awareness of the connection 
between sedimentological and hydrological processes driven 
by human interventions (Persichillo et al. 2018, Owens 2020, 
Poeppl et al. 2020) but also due to highlighting the importance 
of ecosystem services valuation at the catchment scale (Lusardi 

et al. 2020). In light of potential future adverse consequences of 
LULCC that cannot be identified by hydrological model para
meters alone (Bruijnzeel 2004, Sun et al. 2016), we should also 
consider the historical trajectory of catchment modifications 
(Reid 1998, Minella et al. 2017). Hence, studies that contribute 
to a better understanding of spatial and temporal dynamics of 
water and sediment fluxes are still needed (Moragoda and 
Cohen 2020).

It is well known that the land use, the climate regime and 
the local geology are factors that condition sediment availabil
ity at the catchment scale (Douglas and Guyot 2005, Gellis 
2013, Sun et al. 2016). More specifically, the study of the 
discharge (Q) and suspended sediment concentration (SSC) 
relationship bears information about sources, transport and 
connectivity characteristics (Lloyd et al. 2016, Zuecco et al. 
2016). With long records being available, variability in time 
and space can be detected (Warrick 2014, Rose et al. 2018) so 
that future changes can be anticipated and policies for restora
tion, conservation and management can be implemented 
(Warrick 2014).

Given the current knowledge gaps in SSC dynamics in 
tropical catchments driven by LULCC, the main objective of 
this study is to investigate the temporal suspended sediment 
dynamics related to land use change in a large tropical catch
ment in Veracruz, Mexico. The specific objectives were: (1) to 
develop a chronological sequence of satellite-based land cover 
change from 1986 to 1998 for three sub-catchments, then (2) 
to analyse historical long-term discharge and suspended 
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sediment data for trends and hysteresis for each sub- 
catchment and (3) to relate the discharge-suspended sediment 
hysteresis and trend analysis to land cover changes over time.

Study area and datasets

The Papaloapan catchment has an area of approximately 46 
720 km2, draining into the Gulf of Mexico, and constitutes one 
of the most important hydrological basins in Mexico. The 
three studied sub-catchments represent 69.4% of the whole 

catchment (Fig. 1), and their principal physiographic and 
hydrological characteristics are summarized in Table 1.

The sub-catchments are distributed along an altitudinal 
gradient from sea level to 3400 m above sea level, with 
a mean annual rainfall of 1485 mm (Cuervo-Robayo et al. 
2014). According to the Köppen climate classification modi
fied by García (2004), the following climate types can be found 
across the catchment: rainy tropical climate (A) with mean 
temperatures during the coldest month above 18°C in the 
lower catchment areas close to sea level; dry climate (BS) 
with a summer rain regime; and group C with wet temperate 

Figure 1. Location of the study sub-catchments with topography (upper panel), stream network, monitoring stations and long-term annual rainfall (lower panel). PAP: 
Papaloapan sub-catchment; AZU: Tesechoacan sub-catchment; CUA: San Juan sub-catchment.

Table 1. Summary of the physical and hydroclimatic characteristics of the study sub-catchments.

Gauged sub-catchment Papaloapan Tesechoacan San Juan

Area (km2) 20685 4665 7077
Altitudinal range (m) 0–3360 0–3401 4–3400
Slope (degrees) [max–min] 18 [0–84] 16 [0–73] 11 [0–72]
Mean annual precipitation (mm) 1485 1918 2101
Mean annual discharge (m3 s−1) 562 198 242
Mean annual suspended sediment concentration (mg L−1) 20.6 8.1 29.3
Mean mass flux (kg s−1) [max–min] 11.03 [0.12–374] 2.44 [0.04–24] 7.54 [0.15–130]
Stream width at gauging station (m) 238 105 85
Hydrometric station name Papaloapan (PAP) Azueta (AZU) Cuatotolapan (CUA)
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and mean temperatures during the coldest months between −3 
and 18°C and in the warmer months up to 10°C. The latter 
climatic group mostly corresponds topographically to the val
leys in the mountainous upper catchment. Summer rainfall 
predominates, with usually dry winters (precipitation on win
ter <10%). Temperate and tropical forests are concentrated in 
the mountainous areas, with grasslands and agriculture dom
inating the lowlands.

The Papaloapan catchment geology is predominantly sedi
mentary, with metamorphic and igneous materials restricted 
to the mountainous areas (INEGI 1999). The dominant erosive 
processes comprise varying degrees of sheet erosion along the 
catchment, with severe erosion rates focused in the 
Tesechoacan sub-catchment (AZU) and the San Juan sub- 
catchment (CUA) lowlands. Gully erosion is restricted to the 
Papaloapan sub-catchment (PAP) headwaters and small areas 
in CUA (INEGI 2013).

The Q and SSC records were extracted from the National 
Database of Surface Waters (CONAGUA 2016), which com
piles the historical hydrometric data managed by the National 
Water Commission (Solís-Alvarado et al. 2015). The hydro
logical data available are mean hourly, daily, monthly and 
annual discharges, limnographs and discharge rating curves. 
Data collected at gauging stations followed established sam
pling methods (Peters 1998). The suspended sediment 
sampling was conducted at a water depth of 20 cm, in three 
points along a transect over the stream using a 1 L glass 
sampler fixed into an iron frame, with a frequency from 
twice a week during the dry season to hourly sampling rates 
in the rainy season. Discharge was estimated from the water 
height, recorded at least 3 times per day using a discharge 
rating curve. Despite data gaps (<10%), a common period 
from 1985 and 2001 was identified for all three catchments.

For the study period, from 1985 to 2001, precipitation data 
were available from the National Meteorological Service for 58 
meteorological stations. Incomplete records were filled with 
precipitation data from the Climate Hazards Group Infrared 
Precipitation with Stations (CHIRPS) gridded product, which 
are estimated from infrared cold cloud duration (CCD) obser
vations (Funk et al. 2015) on a daily basis at a spatial resolution 
of 0.05°. High correlations between this global precipitation 
product and field observations were previously reported 
(Paredes-Trejo et al. 2017, Rivera et al. 2018, Liu et al. 2019).

Land cover was derived from Landsat 5 and 7 satellite 
imagery with a spatial resolution of 30 m, available from the 
Google Earth Pro platform (Wuthrich 2006). We used high- 
quality and cloud-free panchromatic images captured during 
December of the years 1986, 1993 and 1998.

Methods

Land cover classification

Satellite imagery for land cover classification was processed in 
QGIS v. 3.4.5 Madeira (QGIS Development Team 2019), using 
the open-source extension dzetsaka (Karasiak and Perbet 2018, 
Karasiak 2019). The workflow is illustrated in Fig. 2 and can be 
summarized as follows: the study area polygon was downloaded 
and georeferenced for each year. Subsequently, the regions of 
interest (ROIs) were defined through RGB band combinations 
and converted into a vector file. The aforementioned ROIs corre
sponded to land cover and vegetation types defined according to 
the National Institute of Statistics and Geography. Once the land 
cover types were clearly defined, the classification was applied to 
the whole area using a Gaussian mixture model (Fauvel et al. 
2015). The model was previously trained with 15% of the total 

Figure 2. The erosion and geological classes of the study catchment.
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pixels for the baseline year. The validity of the classifications was 
tested first with a confusion matrix and its accuracy was assessed 
with both the kappa index of agreement – which assesses the error 
reduction obtained from the classification versus a random classi
fication – and the overall accuracy index, which identifies the 
proportion of the total pixels that are correctly classified 
(Karasiak and Perbet 2018). Finally, pixels were filtered and 
reclassified to generate the LULCC maps shown in Fig. 3.

Statistical analysis

The daily discharge and SSC records were first explored with 
standard pre-processing techniques to visualize data, identify 
missing values, and remove outliers and potential correlations. 
The quality-checked data was then averaged to obtain mean 
monthly values for each sub-catchment, and descriptive statistics 
were calculated for the mass fluxes.

We chose four non-parametric statistical tests to characterize 
the sub-catchments’ seasonal sediment transport and the long- 
term trends as well as to identify possible inflection points in the 
analysed time series (Xie et al. 2014). First, a Spearman’s rank 
correlation test was run to measure the level of association as 
well as its relative direction; this test has been frequently used 
with seasonal time series (Machiwal and Jha 2012). 
Subsequently, the Mann-Kendall trend tests in both the original 
and modified versions (Hamed and Rao 1998) were calculated to 
assess the relative direction between variables, to explore its 
trend (Hamed 2016) and then to consider autocorrelation in 
the data. The Sen’s slope estimation test was applied to quantify 
monotonic trends. Finally, the Pettitt’s test for single change- 
point detection was applied to identify gradual or abrupt 
changes in the time series (Xie et al. 2014).

Q-SSC hysteresis analysis and inference of sediment 
sources

The Q and SSC relationship was analysed on an intra-annual 
(mean monthly) and year-to-year scale, using averaged monthly 

data for a hydrological year defined from 1 February to 31 January. 
To quantitatively assess the shape, the direction and the magni
tude of the hysteretic loops, the hysteresis index (HI) proposed by 
Zuecco et al. (2016) was used. This index defines eight hysteresis 
classes, and the shape and direction of the hysteresis loops are 
conditioned by the mechanisms driving the sediment transport 
processes (Sun et al. 2016). Thus, the direction according to the 
sign of HI and the SSC behaviour with respect to the initial state 
(Fig. 4) summarize the following characteristics:

(a) The HI values suggest:
i. Magnitude: The closer to −1 or +1 the value is, the 

larger the hysteretic loop.
ii. Direction: A positive sign (+) indicates a clockwise 

loop (types I, II, V, VI), whereas a negative sign (−) 
indicates a counterclockwise loop (types III, IV, 
VII, VIII).

iii. Velocity of source response: The higher the HI 
value, the larger the differences between the rising 
and falling limbs, meaning faster SSC variations 
(Hamshaw et al. 2018).

(b) The loop direction suggests the distance to sediment 
sources:
i. Clockwise: Proximity to sources such as water 

courses, channel banks and riverbeds or areas near 
the channel via gully erosion (Collins and Walling 
2004, Smith and Dragovich 2009, Sun et al. 2016, 
Hamshaw et al. 2018, Yang and Lee 2018).

ii. Counterclockwise: Distant sources such as hill
slopes, colluvial deposits or upper reaches (Sherriff 
et al. 2016, Sun et al. 2016, Hamshaw et al. 2018, 
Yang and Lee 2018).

iii. Figure-eight-shaped pattern: These complex loops 
(types II, III, VI and VII) are source combinations 
classified according to the dominant direction of the 
larger section of the loop (Seeger et al. 2004, Sun et al. 
2016, Hamshaw et al. 2018, Yang and Lee 2018).

Figure 3. Workflow of land cover and use change analyses.
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(c) The SSC behaviour from the initial state represents the 
dominant mechanism of mobilization from sources 
(Regüés et al. 2000):
i. Increasing: during the dry season discharge acts on 

nearby sources to supply suspended sediment (types 
I–IV).

ii. Decreasing: during the dry season, suspended sedi
ment is limited; later, runoff guarantees the sediment 
supply from surface sources during the rainy season 
(types V–VIII).

Based on our study results, following Zuecco et al. (2016) 
and the work of Seeger et al. (2004), Smith and Dragovich 
(2009), Gellis (2013), Sherriff et al. (2016), Sun et al. (2016), 
Hamshaw et al. (2018), Yang and Lee (2018), Table 2 sum
marizes the principal characteristics for each hysteresis type 
described here.

Results and discussion

Remote sensing applied to LULCC detection in the tropics

Most global studies of LULCC use freely available satellite ima
gery from platforms such as Landsat (Zhu 2017) for scales 
between catchments (i.e. Pérez-Vega and Ortiz-Pérez 2002, 
Muñoz-Villers and López-Blanco 2008, Martínez et al. 2009, 
Twisa and Buchroithner 2019) and whole countries (see 
Landholm et al. 2019, Phiri et al. 2019, Venkatappa et al. 2019) 
because of its numerous advantages as long-term imagery 
records, global coverage and open access (Young et al. 2017).

In Mexico, efforts are being made to standardize historical 
records of LULCC between diverse governmental agencies, but 
due to the high territorial heterogeneity, satellite images 
require intense fieldwork for adequate image classification at 
(preferably) a high spatial resolution (Bocco et al. 2001, 
Velázquez et al. 2002). The advances in geospatial and analy
tical technologies have increased the potential to generate and 
analyse remote imagery (Konecny 2014, Finer et al. 2018). 
However, factors such as the image quality as determined by 
cloud cover, land cover characteristics and the methods used 
for atmospheric correction and image classification impact on 
the final product quality (Mas et al. 2004, Zhu and Woodcock 
2014). In the tropics, clouds are frequent, therefore radar 
imagery such as that from Sentinel or online processing plat
forms such as Google Earth Engine is rapidly increasing in 
popularity in the form of providing catalogues of pre- 
processed satellite imagery, geospatial datasets and scientific 
networking to increase analytical power aimed at detecting 
land cover changes (Sidhu et al. 2018) or mapping specific 
cover types such as crop phenological stages (Dineshkumar 
et al. 2019). Here, we used pre-processed cloud-free composite 
Landsat images from Google Earth Pro. Moreover, to increase 
the accuracy of classification, interest in developing new algo
rithms has increased (Muñoz-Villers and López-Blanco 2008) 
and new proposals are emerging continually (i.e. Li et al. 2011, 
Zhu and Woodcock 2014, Vogelmann et al. 2016, Zhu 2017).

We identified 12 land cover types (excluding water bodies), 
which were then grouped into five major land cover classes as 
shown in Table 3. A semi-automatic image classification tool 
developed for tropical French Guiana (Karasiak 2019) – the 

Figure 4. The eight hysteresis classes (after Zuecco et al. 2016) according to the hysteresis index (HI) value signs and the suspended sediment concentration (SSC) 
increase/decrease from the initial state, to show general directions and shapes. The x-axis displays HI values whereas the y-axis shows SSC values.
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dzetsaka algorithm – was used to assess LULCC. The indexes 
of agreement and accuracy suggested the classifications were 
acceptable, with kappa values of 59.4, 52.5 and 53.8 for 1986, 
1993 and 1998, respectively, and an overall accuracy of 65.9, 
60.6 and 61.3 for the same years. The lower spatial resolution 
(the original work used Satellite for Observation of Earth 
[SPOT] imagery), the high number of classes (12 in this 
study) and the differences in floristic composition between 
vegetation patches of the same type likely contributed to the 
slightly lower accuracy compared to the 80% obtained in 
Karasiak’s original study, despite our successive iterations test
ing different training percentages.

Overall, natural vegetation covered more than two-thirds of 
the area. Thus, tropical forests (on average 16 000 km2 across 
the three sites) were the dominant land cover type in all three 
sub-catchments, followed by temperate forests (6000 km2), 
grasslands (6300 km2) and agriculture (3000 km2). The shrub
lands and scrublands were minor areas (245 km2), susceptible 
to change as explained further below.

Nonetheless, there were also differences among the three 
catchments, with tropical rainforest and tropical dry forest 
being the two most important classes in PAP, covering around 
5000 km2 each, in contrast to AZU and CUA where tropical dry 
forest areas were comparatively minimal (120 and 3 km2, respec
tively). Shrublands and scrublands were also more prominent in 
PAP than in AZU and CUA (surface <5 km2 in the latter two). 
Cultivated grasslands covered around 2600 km2 (37% of the 
total catchment area) of CUA, and induced grasslands (those 
established after vegetation clearance and repeated burning) 
were only relevant in PAP at around 1000 km2.

Land cover changes between the years 1986, 1993 and 1998 
for each sub-catchment (Fig. 3) were estimated from the areal 
differences in each land cover type and period. The shrublands 
and scrublands were fully converted into other land covers at 
AZU and CUA over 12 years, while at PAP about one-third of 
this land cover type disappeared. The temperate forests 
increased by 19% at PAP and almost 47% at CUA over the 
study period. Livestock represented one of the two most 
important productive activities in the whole Papaloapan 
River basin (CONAGUA 1989); hence, grassland-covered 
areas, especially the cultivated ones, tended to increase in all 
three sub-catchments – by up to 38% in AZU. Over the same 
period, cultivated areas decreased by 27.5% at AZU, 35% at 
PAP and 55% at CUA. Tropical forests presented a negative 

trend at AZU (−13.3%), whereas PAP and CUA showed 
a small recovery only in 1993.

At the PAP sub-catchment, annual crops in mountain areas 
were gradually replaced with oak forest from 1986 to 1998. 
During the same period, irrigated crops were substituted in 
approximately 75% of the upper streams with coniferous for
ests and rainforests. In some areas, shrublands and scrublands 
were converted into irrigated crops until 1998.

The AZU catchment also showed reforestation of former 
rainfed crop fields in the upper part of the catchment. During 
the first period, 1986–1993, both oak and cloud forests were 
reduced by half in size; later (1993–1998) these increased from 
4% to 11%. The coniferous forest showed the opposite beha
viour, increasing from 10% to 17% and then decreasing to 8%. 
In contrast, the lower basin rainforests were evidently converted 
to cultivated grasslands during the 1993–1998 period.

Land cover dynamics in the upper CUA recorded an expan
sion of cultivated grasslands on former croplands and tropical 
forest lands, but this was not as drastic a change as for cloud 
forest areas (from 1% in 1986 to 3% in 1998). In the lower 
catchment, rainfed crops and cultivated grasslands were aban
doned between 1986 and 1993 and were temporarily covered 
by growing secondary rainforest before these lands were again 
cleared for cultivated grasslands and cattle farming.

For the Papaloapan sub-catchments, deforestation of between 
16 and 30% was reported in the period 1973–1993 with 
a supervised classification of Landsat imagery (Pérez-Vega and 
Ortiz-Pérez 2002). Increasing runoff observed in the SSC time 
series data was attributed to the quantified loss of forested areas.

During the analysed period (1986–1998), pastures and cul
tures alternated with natural vegetation recovery. This sequence 
of land exploitation was also verified in the subsequent period 
(1999–2011). As will be detailed further below, this pattern is 
relevant for the explanation of the sediment dynamics.

Spatio-temporal suspended sediment behaviour

The humid tropics are characterized by high inter-annual and 
subseasonal variability as well as by intense and pronounced 
gradients of precipitation (Magaña et al. 2003), which have 
a significant impact on water and sediment fluxes, proportion
ally greater than that in temperate zones (Wohl et al. 2012). The 
hydroclimatic inter-annual regimes were calculated based on 
17 years of quality-checked and combined hydrometric records 

Table 3. Land cover per area (km2) for each period and sub-catchment.

Land cover class Type PAP AZU CUA

1986 1993 1998 1986 1993 1998 1986 1993 1998

Temperate forests Oak forest 1726 1230 2292 198 86 175 8 4 10
Coniferous forest 1962 2775 1643 486 805 391 138 182 94
Cloud forest 856 425 1470 185 102 528 76 115 223

Tropical forests Tropical rainforest 5090 5571 5235 2327 2316 2068 3273 3850 3470
Tropical dry forest 5120 4913 5057 150 126 81 7 2 1

Shrublands and scrublands Shrubland 244 235 180 11 3 0 3 0 0
Crasicaule scrubland 42 14 2 0 0 0 0 0 0
Rosetophyllous scrubland 2 0 0 0 0 0 0 0 0

Grasslands Cultivated grassland 1858 1838 2069 708 706 979 2773 2326 2878
Induced grassland 929 1064 753 4 0 0 0 0 0

Agriculture Irrigated crops 357 88 755 19 0 5 3 0 0
Rainfed crops 2099 2099 845 512 462 380 717 517 325

PAP: Papaloapan sub-catchment; AZU: Tesechoacan sub-catchment; CUA: San Juan sub-catchment.
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(1985–2001). Hydrological seasonality was defined as: (1) the 
dry season (from February to May) with no or almost no rain; 
(2) the rainy season (from June to November) driven by cyclo
nic events; and (3) the nortes season (from December to March) 
characterized by intense winter cold fronts coming from the 
north, generating moderate amounts of precipitation 
(Appendini et al. 2014, Ojeda et al. 2017).

The peak discharge occurred in August in all three streams. 
The highest SSC values generally followed the larger discharge 
flows. However, the highest SSC values were recorded in CUA 
(29.3 mg L−1) in June at the start of the rainy season, and then 
in August. AZU exhibited a mean of 8.1 mg L−1, with its 
maximum SSC recorded in September. PAP mean SSC was 

20.6 mg L−1 with the maximum value in October at the end of 
the rainy season, after a first peak in July (Fig. 5).

Furthermore, the multi-year coupled oceanic–atmo
spheric phenomenon El Niño Southern Oscillation (ENSO) 
was responsible for more intense winter rain events (>20%) 
but decreased average summer precipitation (by 10%) in 
1986–1987, 1991–1992, 1992–1993 and 1997–1998 (Magaña 
et al. 1998, 2003, Bravo-Cabrera et al. 2017). Nevertheless, 
this influence was not immediately evident in the monthly 
sediment and discharge time series of the three sub- 
catchments (Fig. 6).

The sediment flux rates revealed higher annual values in 
PAP, with a mean of 347 842 t per year, in contrast to 237 781 t 

Figure 6. Inter-annual monthly hydroclimatic regimes for each subcatchment. Q: discharge (left y-axis), SSC: suspended sediment concentration (right y-axis). PAP: 
Papaloapan sub-catchment; AZU: Tesechoacan sub-catchment; CUA: San Juan sub-catchment.

Figure 5. The study catchment land cover sequence from 1986, 1993 and 1998, together with a bar chart showing the rate of change per land cover class.
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per year in CUA and 76 948 t per year in AZU. However, the 
annual unit mass flux of PAP and AZU was almost the same, at 
16.82 and 16.5 t per km−2, respectively, despite the much larger 
catchment area of PAP. The highest suspended sediment deliv
ery, almost twice the values in PAP and AZU, was reported in 
CUA: 33.6 t per km−2 anually. These values reflect only the 
portion of the produced sediment that reached the gauging 
station. The Spearman’s rank correlation test results of the SSC 
and Q time series only showed a significant relationship 
(r = 0.75; SSC = 0.0312Q + 1.97) for AZU. Both PAP and 
CUA resulted in low correlation coefficients (r = 0.14 and 0.1, 
respectively). The sediment mass fluxes showed a strong cor
relation between CUA and AZU (ρ = 0.854), but also detected 
similar Q-SSC hysteresis loops, that mostly followed the 
hydrological regime, while the PAP mass flux seemed less 
related to both CUA (ρ = 0.565) and AZU (ρ = 0.483), with 
less streamflow regime-related dynamics (Fig. 6).

According to the modified Mann-Kendall trend test (Table 4), 
with a confidence interval of 0.95, the null hypothesis was 
accepted for the three sub-catchments since their monotonic 
negative trends were not significant, as shown by the small Sen’s 
slope values. Large basins are less reactive to high-frequency 
external variations (Richards 2002, Peña-Arancibia et al. 2019), 
which also conforms with the “buffer” effect exerted by the rapid 
secondary regrowth typical of tropical forests (Bruijnzeel 2004). 
Such forest recovery reduced the magnitude of LULCC impact on 
the hydrological variables. However, the only significant 

inflection point detected for PAP, in September 1987 (Pettit’s 
test p value = 0.002), was consistent with the historical records. 
Prior to reservoir operations (1982–1984) the mean sediment flux 
in PAP was around 21 Mt per year, which after the Cerro de Oro 
dam operation began in 1988 was reduced by two orders of 
magnitude. The suggested inflection points for the other sub- 
catchments (Fig. 7) were December 1999 at AZU (p value = 0.266) 
and October 1994 at CUA (p value = 0.147), but these were not 
statistically significant and were more related to the overall hydro
climatic variability.

Despite limited data availability and a reduction of mon
itoring stations in the tropics, historical data was still mostly 
made available by routine government monitoring 
programmes (Warrick 2014). In this study, the quality of the 
Q-SSC data allowed a monthly analysis at the sub-catchment 
scale as a rapid assessment tool to provide insights about 
sediment transport processes (Aich et al. 2014), facilitating 
a comparison of relative contributions between sub- 
catchments (Collins and Walling 2004).

Hysteretic relationships

Since the classical work of Williams (1989) in which five 
hysteresis types were classified, several studies have con
tributed to the interpretation of the processes subjacent to 
hysteresis shape and direction. However, besides the geo
physical characteristics ruling the catchment (Klein 1984, 
Minella et al. 2017), the interpretation of these responses 
also varies according to the temporal scale of the loop, 
which may range from a single event (Seeger et al. 2004) 
to a hydrological year (Regüés et al. 2000). Hence, some 
adaptations (i.e. Duvert et al. 2010) and new proposals (see 
Hamshaw et al. 2018) have also been made. General agree
ments exist about the relationship between the loop direc
tion and the distance to sediment sources (Collins and 
Walling 2004, Smith and Dragovich 2009, Sherriff et al. 
2016, Sun et al. 2016, Hamshaw et al. 2018), which is 
determined by the difference between Q and SSC travel 
times (Yang and Lee 2018).

The mean monthly Q-SSC relationships for the whole per
iod showed SSC increasing from the initial state, following 
a figure-eight-shaped pattern in all three sub-catchments 
(Fig. 7). The estimated HIs for the whole period (Fig. 7) 

Figure 7. Monthly time series of discharge, suspended sediment concentration ((bottom black lines)) and sediment flux (top black lines) in the three sub-catchments. 
The dates and p values highlight the trend inflection point suggested by Pettitt’s test.

Table 4. Statistical trend tests applied to the sediment mass flux time series.

PAP AZU CUA

Mann-Kendall 
test

Original Z −2.52 −1.09 −1.79
Original p value 0.01 0.28 0.07
Original variance 950 260.3 949 999.7 950 125

Modified Mann- 
Kendall test

Modified Zc −1.28 −0.93 −1.55
Modified p value 0.2 0.35 0.12
N/N* 3.89 1.36 1.33
Tau −0.12 −0.05 −0.08
Modified variance 3 700 576 1 292 361 1 262 752

Sens’s slope −0.0129 −0.0006 −0.0033
Pettitt’s test U* 3198 1694 1927

p value 0.002 0.266 0.147
Probable change-point 

at time K
33 180 118

PAP: Papaloapan sub-catchment; AZU: Tesechoacan sub-catchment; CUA: San 
Juan sub-catchment.
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suggest that hydro-geomorphic processes were more similar 
between AZU and PAP since both exhibited positive index 
values (AZU: HI = 0.017, PAP: HI = 0.268) classified as type II. 
In contrast, the CUA HI = −0.012 (type III) reflected a negative 
figure-eight-shaped pattern (Fig. 2).

We subsequently developed monthly Q-SSC hysteresis 
loops for each year individually to assess the annual variations 
in transport and possible sediment sources (Fig. 8). Positive HI 
values were more frequent in all sub-catchments and larger in 
size than those with negative HI (particularly in PAP and 
CUA). However, more than 90% of the HI values were in the 
range between −0.4 and +0.4, exhibiting a rather slow source 
response.

A dominant driver of sediment transport was the climatic 
seasonality, evidenced by hysteresis loops with increasing SSC 
from the initial state (types I to IV), as well as figure-eight- 
shaped patterns of likely complex transport mechanisms (par
ticularly types II and III) (Regüés et al. 2000, Gellis 2013). 
Thus, during the dry season, discharge mobilized sediments 
from river networks and gullies, acting as an important sedi
ment storage component. This does not imply that there was 
no surface runoff generating erosion, but that the in-stream 
erosion guarantees the sediment supply (type I–IV), avoiding 
sediment exhaustion until the next rainy season. Loops that 
detected surface runoff as the principal sediment transport 
mechanism (types V–VII) indicated dependency on rainfall 
to activate transport from colluvial deposits, hillslopes and 
gullies (Regüés et al. 2000). Distant sediment sources seemed 
to be important to refill the in-stream storage to satisfy the 
sediment demand over the next dry season (Duvert et al. 
2010). Finally, annual switching between clockwise and coun
terclockwise loops (Fig. 7) could be related to system memory 
effects (Jansson 2002, Duvert et al. 2010).

During the first period of LULCC (1986–1993), the forested 
area in the upper PAP remained almost the same, but the 
hydrological regime was determined by the dam construction. 
After dam operation started in 1988 the hysteresis loops 
switched from type II in 1987 to type III in 1988 and 1989. 
The disconnection between the upper and lower sub- 
catchments resulted (1990–1991) in ascendant clockwise 
loops (types I and II, respectively) related to nearby sediment 

sources. In the upper AZU sub-catchment, the forested area 
increased by 12.5%, with a reduction in agricultural areas of 
13% in the lowlands. The type I hysteresis in 1985 suggested 
high nearby sediment availability which was progressively 
reduced by vegetation succession and could explain the coun
terclockwise loops in the years 1986–1988 and 1992–1993. In 
CUA, both temperate (upstream) and tropical forests had 
a remarkable recovery from 1986 to 1993, at 35% and 17%, 
respectively. Despite forest recovery, six of the eight hydrolo
gical years in this period showed clockwise loops (type II), 
indicating high sediment availability mobilized by surface run
off, likely due to almost 50% of the land being agricultural and 
grazing area.

During the second LULCC period (1993–1998), both 
temperate and tropical forests in the upstream PAP 
increased by almost 20%, but there was no clear hysteretic 
link to this vegetation recovery. In AZU, the template 
forests continued their recovery by 12%, equivalent to the 
amount of tropical forest loss over the same period (Fig. 3). 
In the lower basin, grasslands increased by 38%. The low 
sediment retention capacity of grasslands would explain the 
predominant hysteresis types I, II and VI that were 
detected. Similarly, the CUA sub-catchment was dominated 
by expanding grasslands (Fig. 3) in the lower basin and 
showed mostly type I and II hysteresis (Fig. 8); type III 
(figure-eight-shaped pattern) was only present in 1986, 
1993 and 1997 – years that were also reported as drier 
than normal, associated with ENSO.

For the whole period, the PAP showed the largest varia
bility in Q-SSC relationships, with mostly nearby mobilized 
sediment. The AZU presented the lowest HI values, except 
for 1994 (type VI). The CUA exhibited the highest HI 
values with a more regular and clockwise behaviour (type 
I and II); the latter was possibly associated with higher 
sediment availability derived from in-stream sources as 
well as superficial erosion.

Land cover change – suspended sediment behaviour

Despite a negative SSC trend, annual sediment fluxes showed 
no statistically significant trends. The explanation for this 

Figure 8. Monthly suspended sediment concentration–discharge hysteresis loops. Numbers in each loop indicate the corresponding month. Arrows highlight the loop 
direction. PAP: Papaloapan sub-catchment; AZU: Tesechoacan sub-catchment; CUA: San Juan sub-catchment.
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could be related to the controls dominating the sediment 
dynamics. At the catchment scale, there are extrinsic controls, 
such as human impact (Restrepo et al. 2015) and climate 
variability, and intrinsic controls such as the role of geomor
phology (Richards 2002, Verstraeten et al. 2009). 
Hydrologically driven erosion (Fig. 9) and subsequent sedi
ment mobilization recur more frequently in susceptible areas 
such as stream banks, crop fields, hillslopes and deforested 
areas (Manson 2004, Hamshaw et al. 2018). The three sub
catchments showed temperate forests recovering from former 
annual crops (48% in CUA) in 1998 with respect to the initial 
state (1986), similar to a report for a neighbouring catchment 
(Muñoz-Villers and López-Blanco 2008); specifically, cloud 
forest areas nearly tripled in size, from 51 km2 in 1986 to 
142 km2 in 1998, which were important to sustain the baseflow 
during the dry season (Bruijnzeel 2004, Wohl et al. 2012). 
These improvements could be related to the implementation 
of conservation measures by land owners (Oviedo 2002) as 
well as the declaration of 4700 km2 of PAP as the Tehuacan- 
Cuicatlan Biosphere Reserve, to protect tropical and temperate 
forests, riparian vegetation, grasslands and xerophytic vegeta
tion (DOF 1998). However, the HI showed an important con
tribution from distal sources to the sediment transport in 
suspension. Bello et al. (2009) associated the Alvarado 
Lagoon estuary siltation to the deforestation of the 
Papaloapan headwaters and its subsequent sediment genesis 
and transport processes.

The moderate slopes (under 15%) and the tropical forest cover 
over 50% of the total surface could be key to controlling sediment 
transport (Wohl et al. 2012). Quick secondary regrowth as 
observed in the study area slowed surface erosion (Bruijnzeel 
2004), and the extensive floodplains acte as sediment storage 
(Verstraeten et al. 2009). However, changes in sediment produc
tion and delivery promoted by LULCC were detected through 
hysteresis patterns. Mostly clockwise loops in all three sub- 
catchments indicated sediment availability from nearby sources, 
after land clearing and heavy rainfall events (Nampak et al. 2018). 
The large grassland areas (around 15% in PAP and AZU; 37% in 
CUA) supplied sediments to the in-stream storage due to reduced 
soil infiltration and increased surface runoff (Bruijnzeel 2004, 
Manson 2004) under decreases in soil properties such as porosity, 
infiltrability and water retention (Peña-Arancibia et al. 2019) as 
well as the nutrient content (Tobón et al. 2011).

Even if statistical tests did not show significant changes in 
sediment fluxes, there is evidence for land use change-induced 
sediment source changes. A switch in the sediment dynamics 
at the catchment scale occurred due to the former storage areas 
now acting as sediment sources, and thus implying erosion, as 
verified in Fig. 9. This switch was likely caused by extended 
grasslands in the downstream alluvial plains in all three sub- 
catchments, promoted by a rotary system of use–abandon
ment–regeneration (Arévalo et al. 2019). Through the analysis 
of the elemental composition of a sediment core from the 
Papaloapan outlet, Ruiz-Fernández et al. (2014) demonstrated 
increased sediment accumulation by almost fivefold during the 
previous 40 years, due to the LULCC in the lowlands.

Therefore, LULCC is a key long-term influence on sedi
ment production (Bello et al. 2009, Ruiz-Fernández et al. 
2014), whilst meteorological phenomena such as ENSO, hur
ricanes and nortes seem to immediately influence the transport 
dynamics over short-term periods (Solano-Rivera et al. 2019).

Conclusions

In this research, we detected and inferred remotely sensed 
chronosequences of LULCC in a large tropical catchment of 
Mexico. The derived land cover types were combined with 
long-term discharge-suspended sediment transport data and 
analysed for internal dynamics at three sub-catchments using 
overall mean monthly hysteresis analysis, and from year-to- 
year hysteresis. One (AZU) out of three studied sub- 
catchments showed a clear Q-SSC relationship with hysteresis 
dynamics that could be related to land use change, while in the 
PAP sub-catchment the sediment dynamics were greatly influ
enced by reservoir operations, with a reduction by two orders 
of magnitude in its sediment flux. Croplands and grasslands 
were constant sources for sediment transport in CUA, despite 
a significant forest recovery. The upper sub-catchments 
showed distinctive vegetation recovery, while the lower plains 
were under alternating grazing use and secondary regrowth. 
Extending grassland areas in the alluvial plains caused switches 
from sediment storage to source.

The negative SSC trends in all three sub-catchments 
were statistically not significant. However, the hysteresis 
analysis revealed a tight relationship with general and 
more obvious hydroclimatic variability, but also with 

Figure 9. Annual hysteresis index values and types. h: hysteresis index value; Roman numerals indicate hysteresis types. PAP: Papaloapan sub-catchment; AZU: 
Tesechoacan sub-catchment; CUA: San Juan sub-catchment.
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LULCC. Sediment generation and transport depend on 
climatic variability, but anthropogenic influences such as 
reservoir operations and LULCC could be detected in his
torical Q-SSC time series based on hysteresis analysis. It is 
likely that large reservoirs override much of the sediment 
imprint from land use change.

This study highlighted the importance of better elucidating 
sediment dynamics in tropical watersheds under fast, dynamic 
land use changes (e.g. transitions from forest to agriculture and 
vice versa) and river fragmentation due to manmade infrastruc
ture (e.g. dam construction). Here, a diagnosis of sediment 
dynamics in tropical rivers using empirical data showed its poten
tial for decision-making purposes, such as improving land use 
conservation plans for a more effective reduction in soil loss and 
sedimentation issues in the lower parts of catchments.
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