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Methods S1. DOC flux calculations 

We used an S-can spectro::lyser (Messtechnik GmbH) for in situ, bi-hourly measurements of DOC. 

This instrument is a portable ultraviolet-visible spectrometer that measures light attenuation between 

200 nm and 750 nm (Langergraber et al. 2003). DOC is calculated via an internal algorithm using 

absorption in the range 230-450 nm. The instrument automatically corrects for turbidity effects 

(measured at 450-650 nm), so that post-hoc correction of DOC values as in Saraceno et al. (2017) was 

not required. 

In total, we recorded 2760 optical measurements, corresponding to 32% of coverage over the two years 

of study – and, critically, 74% of coverage during the more dynamic wet season (January–May). The 

longest gaps in the time series were during the dry season, when DOC was less variable. In these 

instances, we gap-filled the series with measurements obtained from grab sampling. Data gaps were 

due to a variety of issues such as saturation of the sensor, pump failure, and last but not least theft of 

solar panels. 

The optical measurements of DOC were then calibrated using 23 grab samples collected under a wide 

range of flow conditions. To satisfy the assumption of normality, we log-transformed the optical 

measurements and ‘true’ DOC concentrations and derived a type-2 linear regression (MATLAB 

function lsqfitma) between them (Figure S1). The least square fitting using lsqfitma is adjusted by 

minimising both x- and y-residuals.  
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Figure S1. Linear regression (solid line) between log-transformed automated DOC measurements (log (DOCa)) and log-

transformed sample DOC concentrations (log (DOCs)) in the Howard River. The dashed lines and grey shaded area correspond 

to the 99% confidence intervals of the regression, which we used in the quantification of uncertainties.  

 

Using the relationship between in situ sensor measurements and DOC concentrations, we derived bi-

hourly time-series of calibrated DOC (Figure S2). All gaps in the series were filled with (i) manual 

measurements and (ii) linear interpolation between existing values. 

 

Figure S2. Calibrated automated data (black dots) and DOC concentrations from grab samples (purple circles) in the Howard 

River. 

 

Methods S2. DIC flux calculations 

In total, we recorded 5606 in situ measurements of pCO2, pH and temperature, which we converted into 

estimates of DIC concentrations using a temperature-dependent approximation of the CO2 solubility 

constant KCO2 (Plummer and Busenberg 1982): 

log𝐾CO2 = 108.3865 + 0.01985076 𝑇 −
6919.53 

𝑇
− 40.4515 log 𝑇 +

669365

𝑇2
, 

and the carbonate dissociation constants (Harned and Davis 1943): 

𝑃𝐾1 =
3404.71

𝑇
+ 0.032786 𝑇 − 14.8435  
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𝑃𝐾2 =
2902.39

𝑇
+ 0.02379 𝑇 − 6.498  

The obtained DIC data cover 64% of the two years of study, with most data gaps during the low flow 

periods. In these instances, we gap-filled the series with measurements obtained from grab sampling.  

The DIC values based on in situ measurements were then calibrated using 17 grab samples collected 

under a wide range of flow conditions. We used a type-2 linear regression (MATLAB function lsqfitma) 

between automated measurements and ‘true’ DIC concentrations (Figure S3): 

 

Figure S3. Linear regression (solid line) between DIC estimates based on automated pCO2, pH and temperature (x) and 

measured DIC concentrations (y) in the Howard River. The dashed lines and grey shaded area correspond to the 99% 

confidence intervals of the regression, which we used in the quantification of uncertainties.  

 

Using the relationship between in situ estimates and DIC concentrations, we derived bi-hourly time-

series of calibrated DIC (Figure S4). All gaps in the series were filled with (i) manual measurements 

and (ii) linear interpolation between existing values. 

 

Figure S4. Calibrated automated DIC data (black dots) and DIC concentrations from grab samples (purple circles) in the 

Howard River. 

 

Note that the large variability in DIC concentrations during the July-17 to October-17 period 

corresponds to greater amplitude in diurnal DIC cycles. This is related to higher water residence times 

and increased importance of river metabolism during the dry season. The observed diurnal cycles did 

not result in significant changes in the annual DIC load, as these values corresponded to low flow 

conditions.   
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Methods S3. Quantification of uncertainties on DIC and DOC load estimates 

Uncertainties on the total DOC and DIC load estimates were assessed through a Monte Carlo error 

propagation approach following the below workflow: 

1) For each bi-hourly timestep, we generated 10,000 sets of discharge values and 10,000 sets of 

concentration values – for discharge, we used a Gaussian distribution centred on the measured value 

and with relative standard deviation ±20% of the measured value, while for C concentrations, we used 

a beta distribution (α=3; β=3) bounded by the 99% prediction interval as given by the calibration curves 

(Figures S1 and S3). This beta distribution is in many ways similar to a truncated Gaussian distribution. 

2) From the sets of values generated in 1), we randomly sampled 10,000 multiplication pairs of 

discharge and concentration values for each timestep and derived 10,000 flux estimates. We then 

extracted an error range for each timestep as defined by the interval between percentiles 2.5 and 97.5 

(P97.5 – P2.5), roughly equivalent to ±2σ.  

3) Total annual loads were obtained by summing up the bi-hourly flux estimates obtained in 2). We 

thereby obtained 10,000 estimates of total load, from which we extracted the median. Because 

independent errors tend to cancel out, calculating the error based on these 10,000 load estimates would 

yield artificially small uncertainties (e.g. Horgby et al. 2019). We therefore opted for a more 

conservative approach, where the uncertainty on total loads ΔL (≈±2σ) was obtained from the root sum 

of squared errors on flux estimates at each timestep t: 

∆𝐿 = 2 × √∑ (𝑃97.5𝑡 − 𝑃2.5𝑡)
2

𝑡   

Doing this we assumed no autocorrelation of the data, which has been a common assumption in recent 

studies (e.g. Boix Canadell et al. 2019). 

 

Methods S4. POC flux calculations 

Unlike for DIC and DOC, the annual POC load was estimated based on manual measurements only. 

We collected 13 one-litre samples in 2018 under different flow conditions, which we used to quantify 

POC concentrations. We first filtered a known volume of each sample using pre-weighed glass 

microfibre filters (Whatman GF/F 0.7μm). Filters were then dried for 2h at 105°C and reweighed to 

determine total suspended solid concentrations. After drying, filters were immediately stored in sterile 

2 mL Eppendorf tubes and kept at -20°C until they were sent for POC analysis. Filters were later 

analysed at Southern Cross University on a Flash elemental analyser and a Delta V Plus isotope ratio 

mass spectrometer (Thermo Scientific), as per the procedure described in Maher et al. (2013). 

Because our POC dataset was limited in size, we were not able to directly derive POC fluxes from the 

discharge and concentration series. We used the LOAD ESTimator (LOADEST) software package 

(Runkel et al. 2004), particularly adapted for the estimation of constituent loads when flow data are 

available but matched by irregular concentration measurements. 

We chose the Adjusted Maximum Likelihood Estimation method to optimise the calibration and 

estimation procedures within LOADEST. The program builds a total of nine predictive models, and we 

used Akaike’s Information Criterion to select the best fit: 
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 ln 𝐹𝑃𝑂𝐶  =  4.3729 +  1.4086 ln 𝑄  +  0.8133 sin2𝜋𝑡 − 0.5518 cos 2𝜋𝑡  

where FPOC is the daily POC load, Q is the mean daily discharge, and t is the centred decimal time. We 

report uncertainties on the total POC load estimate as provided by LOADEST, i.e. the 95% confidence 

interval (≈±2σ) on the predicted annual load. 

 

Methods S5. CO2 evasion 

The rate of CO2 evasion from the river network was estimated using three independent methods. Rather 

than estimates based on chamber measurements, which can be difficult to undertake under flooded 

conditions and may not necessarily be representative of the whole stream network, we opted for a mass 

balance approach (method 1), an estimate based on groundwater recharge calculations (method 2), and 

the use of common empirical gas exchange models (method 3). 

 

Method 1. Mass balance 

This method is based on an earlier characterisation and quantification of different water sources entering 

the river (Duvert et al. 2020). The rate of CO2 evasion was calculated as the sum of CO2 losses from 

each water source to the river outlet. This method resembles that in Hutchins et al. (2020), although 

here we assumed a mixture of several water sources contributing to streamflow. We integrated the mass 

balance over time such as: 

𝐹𝐶𝑂2 =
∑ 𝛼𝑄𝑡(𝐶shallow gw̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐶river𝑡) + 𝛽𝑄𝑡(𝐶wetland

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐶river𝑡) + 𝛾𝑄𝑡(𝐶deep gw
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐶river𝑡)𝑡

𝐴
 

Where FCO2 is the cumulative flux of CO2 for the study period; Qt and Criver t are the bi-hourly time series 

of discharge and CO2 concentration in the river; 𝐶shallow gw̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐶wetland̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐶deep gw̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are the average CO2 

concentrations in the three previously identified water sources i.e. shallow groundwater, wetlands and 

deep groundwater (Duvert et al. 2020); α, β and γ are the relative flow proportions contributed by each 

source, as defined by Duvert et al. (2020) using electrical conductivity and δ18O as tracers; and A is the 

catchment area. 

Uncertainties related to Method 1 were quantified by generating, for each of the three sources and at 

each timestep, 10,000 sets of CO2 concentrations centred on the median and bounded by two standard 

deviations of the measured concentrations as per Duvert et al. (2020). We also generated 10,000 river 

pCO2 values for each timestep from a Gaussian distribution centred on the measured value and with 

relative standard deviation ±10%, as well as 10,000 values of α, β and γ centred on the seasonal estimate 

given by Duvert et al. (2020) and with relative standard deviation ±15%. We then randomly derived 

10,000 evasion estimates for each timestep and extracted the median as well as an error range (P97.5 – 

P2.5). As we did for the dissolved load estimates, the uncertainty on total evasion flux was obtained from 

the root sum of squared errors on flux estimates at each timestep. 
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Method 2. Groundwater recharge 

The second method quantified the flux of DIC recharging the shallow aquifer during the wet season and 

used this recharge flux as a proxy for DIC export from the terrestrial pool. To do this, we used the water 

table fluctuation (WTF) method (Healy and Cook 2002) and groundwater level data taken from a 

monitoring bore intersecting the shallow aquifer (NTG bore RN009421). The method involved first 

computing a master recession curve, as in Delin et al. (2007): 

𝐻𝑡 = exp (log (𝐻0 − 𝑑) + 𝑅𝑒 × 𝑡) + 𝑑  

Where H0 and Ht are the groundwater levels at the start and end of the recession, respectively, t is time, 

and d and Re are the two parameters of the regression. We adjusted the master recession curve based 

on H0, Ht and t data from eight years (2010–2012; 2014–2018; R2=0.90; p<0.0001). This master 

recession curve was then extrapolated to each recession stage of the groundwater level series (Figure 

S5), so that we could derive, for each year, the height difference between the peak of the rise and 

extrapolated antecedent recession curve at the time of the peak (ΔH; Figure S5). Estimates of ΔH for 

2017 and 2018 were then used to derive recharge rates for these two years as per the WTF method 

(Healy and Cook 2002): 

𝑅𝑇 = 𝑆𝑦 × ∆𝐻𝑇  

Where RT is recharge for year T (mm yr-1), ΔHT is the groundwater level rise created by recharge for 

year T (mm), and Sy is the specific yield of the shallow aquifer (unitless). 

 

Figure S5. Groundwater level series and master recession curve modelling to calculate annual recharge rates for the shallow 

aquifer underlying the Howard River catchment. Data from NTG bore RN009421. 

 

Because estimates of Sy for the shallow aquifer are somewhat uncertain (Cook et al. 1998), we opted 

for a water balance approximation to get a more representative estimate of Sy: 

𝑃 = 𝐸𝑇 + 𝑅    
𝑦𝑖𝑒𝑙𝑑𝑠
→        𝑆𝑦 =

𝑃−𝐸𝑇

∆𝐻
  

With P and ET the measured annual precipitation and evapotranspiration amounts, respectively. Note 

that we did not include discharge (Q) as an additional output term in this water balance, as we considered 

that a significant part of Q is already expressed in R. We calculated Sy for the last eight years of data 

(2011-2018, excluding 2013) and computed the mean of seven Sy estimates (Sy=0.15±0.07). 
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The last step involved multiplying the annual recharge rate by the mean DIC concentration in the 

shallow aquifer to obtain an annual rate of DIC export. Here uncertainties were assessed by generating 

100,000 sets of DIC concentrations (centred on the median and bounded by two standard deviations of 

the measured concentrations as per Duvert et al. (2020)) and Sy (centred on the mean as obtained above 

and bounded by two standard deviations), which yielded 100,000 estimates of DIC export for each year. 

We extracted the median and an error range (P97.5 – P2.5) from these simulations and for each year. We 

note that Method 2 also required subtracting our estimate of the downstream (riverine) export of DIC, 

in order to avoid double accounting. 

 

Method 3. Empirical models 

The third method involved calculating CO2 evasion fluxes by multiplying estimates of the gas transfer 

velocity (kCO2) to the water–air CO2 gradient: 

𝐹CO2 = ∑ 𝑘CO2𝑡  (𝐶river𝑡 − 𝐶atm)𝑡   

Time-dependent estimates of kCO2 were obtained by first calculating time-dependent estimates of k600 

using three empirical models from the literature (Raymond et al. 2012): 

Model 1:  𝑘600𝑡 = (𝑣𝑡 × 𝑠)
𝑎 × 𝑑𝑡

𝑏 × 𝑐  

Model 2:  𝑘600𝑡 = 𝑒 (1 − 𝑓 × 𝐹𝑟𝑡
2) (𝑣𝑡 × 𝑠)

𝑔 × 𝑑𝑡
ℎ
  

Model 7:  𝑘600𝑡 = 𝑙 (𝑣𝑡 × 𝑠)
𝑚 × 𝑄𝑡

𝑛 × 𝑑𝑡
𝑝
  

Where vt, dt and Qt are the river velocity, depth and discharge at bi-hourly timestep t; s is the average 

river slope (0.00142); Fr is the Froude number at bi-hourly timestep t; a, b and c are the parameters for 

model 1; e, f, g and h are the parameters for model 2; and l, m, n and p are the parameters for model 7 

(Raymond et al. 2012). kCO2 was then derived from the k600 series using the relationship: 

𝑘CO2𝑡
= 𝑘600𝑡 (

ScCO2𝑡
600

)
−0.5

  

Where ScCO2 is a temperature-dependent estimate of the Schmidt number, obtained as per Jähne et al. 

(1987): 

ScCO2 = 1923.6 − 125.06 𝑇 + 4.3773 𝑇
2 − 0.085681 𝑇3 + 0.00070284 𝑇4  

While river discharge and depth were measured, we used hydraulic geometry relationships (Leopold 

and Maddock 1953) to estimate series of river flow velocity, of use in the models. 

Uncertainties were estimated using a Monte Carlo analysis with each model input parameter being 

randomly selected over their range, as given in Raymond et al. (2012). We ran 10,000 simulations for 

each timestep and extracted an error range (P97.5 – P2.5). Total annual evasion fluxes were then obtained 

by summing up the bi-hourly evasion estimates, which yielded 10,000 estimates of total evasion flux, 

from which we extracted the median. Again, the uncertainty on the total evasion flux according to each 

model was obtained from the root sum of squared errors on flux estimates at each timestep. 
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Methods S6. Estimates of NEP 

Half-hourly fluxes of heat, moisture and net CO2 flux were measured for the AU-How and AU-Fog 

sites. Flux instruments were mounted on guyed masts with adequate homogeneous fetch in all directions 

and slopes of <1°. According to the eddy-covariance method, the CO2 flux measured during daytime 

represents the net exchange of C (NEP) and comprises both uptake via canopy photosynthesis (GPP) 

and losses from ecosystem respiration (Re). The CO2 flux measured during night-time is entirely due 

to Re, and this night-time flux is then extrapolated to daytime periods in order to derive estimates of 

NEP and GPP fluxes, such as NEP = GPP – Re.  

The eddy-covariance flux data were quality-assured and quality-controlled using the OzFlux standard 

processing protocol implemented through the OzFluxQC v2.9.4 Python scripts, as described by Isaac 

et al. (2017). A number of corrections were applied, including frequency attenuation, 2D coordinate 

rotation, conversion of sensible heat from virtual to actual flux, application of the WPL correction to 

account for density effects of heat and water vapour transfer on fluxes, and correction of soil moisture 

and soil heat flux measurements. This allowed us to obtain level-3 data. Data gaps in the level-3 data 

were then filled using neural network modelling via the processing package DINGO (Dynamic 

INtegrated Gap filling and partitioning for OzFlux, Beringer et al. 2017), also developed in Python. 

From the half-hourly series of GPP, Re and NEP obtained at AU-How, we derived half-hourly, daily, 

monthly and annual series of NEP across the two years of survey. 

 

Methods S7. Asynchronicity in wetland NEP estimates  

The wetland NEP estimates used in this study were not measured at the same time as all other fluxes. 

We used measurements from Beringer et al. (2013) from a seasonal floodplain ~20 km from the Howard 

River, a dataset that covers three years (2005-2008). To assess how representative of our study period 

(2016-2018) these earlier wetland measurements were, we compared a number of meteorological and 

ecosystem variables for those two periods (Table S1). 

We found broad similarities in all studied variables between the 2005-2008 and 2016-2018 periods. 

Rainfall, air temperature and solar radiation were largely similar between the two periods, both during 

the wet and dry seasons. Likewise, there was no significant difference between the percent area of 

wetland covered by vegetation in 2005-2008 and in 2016-2018, with similar seasonal dynamics for the 

two periods. The savanna flux tower (AU-How) has been collecting NEP data since 2001, and fluxes 

were also comparable between the two study periods. 

We used the Kruskal-Wallis test to determine whether wet and dry season datasets were significantly 

different between the two study periods. For all the variables considered, the null hypothesis could not 

be rejected (all p-values > 0.14 except for rainfall (0.08); Table S1), pointing to a high degree of 

similarity between the two periods. 

As an additional line of evidence, Beringer et al. (2013) found a small range of variation in the annual 

wetland NEP estimates among the three years of survey (286 to 344 Mg C km-2 yr-1; mean 311 Mg C 

km-2 yr-1). Taken together, these analyses indicate that (i) the two periods are indeed comparable in 

terms of climatic conditions, flooding extent and vegetation growth, and (ii) it is reasonable to assume 

a relatively low inter-annual variability in wetland NEP. 
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Table S1. Comparison between meteorological and ecosystem variables at Fogg Dam (i.e. the wetland site studied in Beringer 

et al., 2013) for the 2005-2008 and 2016-2018 periods. The p-values at the bottom correspond to the null hypothesis that the 

annual data for the two periods come from the same distribution (Kruskal-Wallis test). 

    wet season dry season 

  

water year 
P 

(mm) 

T 

(°C) 

vegetation 

cover (%) 

solar 

radiation 

(W/m2) 

savanna 

NEP 

(t/km2) 

P 

(mm) 

T 

(°C) 

vegetation 

cover (%) 

solar 

radiation 

(W/m2) 

savanna 

NEP 

(t/km2) 

Beringer 

et al. 

(2013) 

2005-2006 1499 27.9 70.2 225.7 277.1 28 23.8 31.7 247.5 155.1 

2006-2007 1722 27.5 72.7 231.7 373.3 33 24.5 43.6 235.8 127.5 

2007-2008 1593 27.8 65.8 235.7 253.2 11 25.5 38.9 241.1 133.7 

mean 1605 27.7 69.6 231.0 301.2 24 24.6 38.1 241.5 138.8 

this 

study 

2016-2017 1692 27.4 69.8 228.9 380.1 0 25.5 36.0 236.5 144.5 

2017-2018 1674 27.5 65.3 230.8 268.7 4 26.1 43.0 235.7 111.8 

mean 1683 27.4 67.5 229.8 324.4 2 25.8 39.5 236.1 128.1 

  p-value 0.564 0.139 0.248 0.564 0.564 0.083 0.139 1.000 0.248 0.564 

Rainfall and air temperature were obtained from Middle Point BoM station (014041), located < 1 km from Fogg Dam. Solar radiation and savanna NEP 

were obtained from the Howard Springs eddy-covariance flux tower, located about 20 km from Fogg Dam. Vegetation cover was obtained using quarterly 

satellite imagery and the VegMachine online tool (https://vegmachine.net/) for the Fogg Dam area. 

 

Methods S8. Fire-related emissions 

To estimate fire-related greenhouse gas emissions, we used an Excel spreadsheet version (A. Edwards, 

personal communication) of the online tool SavBAT 2.2 (https://v2.savbat.environment.gov.au). 

SavBAT uses vegetation classes and monthly fire scar maps from the North Australia and Rangelands 

Fire Information service (NAFI). Based on time of year (fire severity), burning efficiency, patchiness, 

fuel load and emission factors for each grass and woody vegetation class, the algorithm calculates the 

CO2, CH4 and N2O emissions for a given area (Commonwealth of Australia 2015). Regardless of the 

vegetation type, both burning efficiency and patchiness factors are higher for late dry season fires, 

resulting in higher gaseous emissions for these fires. We set the cut-off date from early to late dry season 

to July 1 instead of August 1 as set in SavBAT by default. This is because the default cut-off date is set 

for policy reasons in the burning methodology, whereas for the purpose of gaseous emission estimates, 

fires in July can be considered as late dry season since they are of much higher severity compared to 

earlier fires (Hutley, Edwards and Setterfield, personal communication). 

For the savanna component of the Howard River catchment, vegetation was classified into two types, 

i.e. ‘hOFM’ (open forest with mixed grass; ~60% of the catchment area) and ‘hWMi’ (woodland with 

mixed grass; ~40%). These two vegetation classes differ in their fuel load accumulation factors as 

assigned by SavBAT. Fine fuel loads increase with the time since last burn (Table S2), whereas coarser 

fuel loads are assigned constant values in the model (Table S3). 

 

 

https://v2.savbat.environment.gov.au/
https://v2.savbat.environment.gov.au/
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Table S2. Fine fuel loads for each vegetation class.  

years since 

last burn 

fuel load (Mg ha-1) 

hOFM hWMi 

1 2.74 3.8 

2 4.25 4.41 

3 5.07 4.51 

4 5.53 4.53 

5 5.78 4.53 

>5 6.06 4.53 
 

 

 

Table S3. Non-fine fuel loads for each vegetation class.  

vegetation class fuel load (Mg ha-1) 

  coarse heavy shrub 

hOFM 1.4 4.8 1.5 

hWMi 0.9 2.2 0.5 

 

For the seasonal wetland component, we assigned the hWMi vegetation type to the whole area. The 

hWMi class contains more fine fuel load and less coarse fuel load (Tables S2 and S3), which reflects 

the vegetation assemblage in this landscape component i.e. a mixture of grass-dominated floodplains, 

flooded woodland and small patches of riparian forest (Figure S6). 

 

Figure S6. Illustration of the different vegetation assemblages occurring in the wetland landscape component as opposed to 

upland savanna. The white dashed line represents the boundary between the two landscape components. Image taken from 

Google Earth (late dry season, September 2017). 
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Figure S7 shows an example output from SavBAT for a given year. Because outputs using the online 

tool are given per year only, we used the Excel spreadsheet to derive monthly burnt areas and fire-

related CO2 and CH4 emissions. We did this for the two years of survey. 

 

Figure S7. Example of SavBAT output for year 2018. Regardless of the vegetation type, both burning efficiency and patchiness 

factors are higher for late dry season fires, resulting in higher gaseous emissions for these fires.  

 

Discussion S1. Decoupling between DOC and DIC concentrations 

 

Figure S8. Concentration–discharge relationships in the Howard River for DIC (left) and DOC (right) throughout the two years 

of survey. Yellow and green colours correspond to data recorded in the dry season, while dark blue colours correspond to the 

wet season. 

 

DIC concentrations decreased with increasing flow (Figure S8). We explain this dilution pattern (i.e. 

negative C-Q slope) by the occurrence of a major DIC source in the carbonate aquifer that sustained 

baseflow during the dry season (Duvert et al. 2020). Lower DIC concentrations in the wet season (0.1–

5 mg L-1) relative to the dry season (20–60 mg L-1) were likely the result of (i) the dilution of this 

mineral source by surface waters and shallower flowpaths at high discharge, and (ii) greater CO2 

evasion rates that depleted the riverine DIC pool further. Dilution patterns similar to the one we report 

here for DIC have been attributed to a decrease in the relative contribution of mineral-rich groundwater 

at high flow (e.g. Li et al. 2017).  
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In contrast, high DOC concentrations were measured at high discharge (4–11 mg L-1), while baseflow 

conditions were characterised by lower DOC concentrations (1–3 mg L-1) (Figure S8). This positive C-

Q relationship is indicative of a flushing behaviour, likely caused by increased connectivity between 

organic-rich wetlands, shallow soil and the river during major flow events. This interpretation is 

consistent with modelling work by Birkel et al. (2020), and a common pattern for DOC in streams and 

rivers (e.g. Boyer et al. 1997; Musolff et al. 2017; Shih et al. 2018; Zhi et al. 2019). 

The decoupling between DIC and DOC dynamics is not an uncommon observation in the tropics (Shih 

et al. 2018), and can be attributed to changes in water sources across seasons. DOC is mostly associated 

with organic-rich (shallow) water sources, generally dominant at high flow, whereas DIC typically 

originates from mineral-rich (deep) groundwater, generally dominant at low flow. Zhi et al. (2019) 

proposed that the alternating dominance of shallow and deeper water sources is the main mechanism 

leading to contrasting C-Q patterns for different solutes. Our results suggest that the conceptual 

framework developed by Zhi et al. (2019) for temperate catchments also holds for the wet-dry tropics, 

where flow regimes are governed by shifts in water sources (Birkel et al. 2020; Duvert et al. 2020). 

Despite the dissimilarity in C‐Q patterns between DOC and DIC, it is interesting to note that for both 

C forms the range of variation in concentrations (one and three orders of magnitude for DOC and DIC, 

respectively) was significantly lower than the range of variation in discharge (four orders of magnitude). 

This relative chemostatic state reminds us that on an annual scale, both DIC and DOC loads were 

primarily controlled by discharge (Musolff et al. 2017). 
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