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Key points: 

- Rainforest system dominated by a quick, near-surface runoff generation.  

- No evidence for deeper and older groundwater. 

- Mixing analysis results of EMMA and MixSIAR were largely consistent. 

- Catchment geomorphological differences resulted in distinct hydrochemical signatures. 

 

Abstract 

The impacts of forest conversion on runoff generation in the tropics have received much interest, 

but scientific progress is still hampered by challenging fieldwork conditions and limited 

knowledge about runoff mechanisms. Here, we assessed the runoff generation, flow paths and 

water source dynamics of a pristine rainforest catchment in Costa Rica using End Member Mixing 

Analysis (EMMA) and a Bayesian mixing model (MixSIAR). Geochemical tracer data collected over 

a four-week field campaign were combined with tritium data used to assess potential deeper 

groundwater flow pathways to the perennial stream. The streamflow composition was best 

captured using three end-members, namely throughfall, shallow (5 – 15 cm) and deeper (15 – 50 

cm) soil water. We estimated the end-member contributions to the main stream and two 

tributaries using the two mixing approaches and found good agreement between results 



 
 

obtained from EMMA and MixSIAR. The system was overwhelmingly dominated by near-surface 

sources, with little evidence for deeper and older groundwater as tritium-derived baseflow mean 

transit time was between 2.0 and 4.4 years. The shallow soil flow pathway dominated streamflow 

contributions in the main stream (median 39 % and 49 % based on EMMA and MixSIAR, 

respectively), followed by the deeper soil (32 % and 31 %) and throughfall (25 % and 19 %). The 

two tributaries had even greater shallow soil water contributions relative to the main stream (83 

% and 74 % for tributary A and 42 % and 63 % for tributary B). Tributary B had no detectable deep 

soil water contribution, reflecting the morphology of the hillslope (steeper slopes, shallower soils 

and lower vegetation density compared to hillslope A). Despite the short sampling campaign and 

associated uncertainties, this study allowed to thoroughly assess runoff generation mechanisms 

in a humid tropical catchment. Our results also provide a first comparison of two increasingly 

used mixing models and suggest that EMMA and MixSIAR yield comparable estimates of water 

source partitioning in this tropical, volcanic rainforest environment. 

 

Keywords: humid tropics, runoff generation, tracers, Costa Rica, water source contribution, 

EMMA, MixSIAR. 

 

1. Introduction 

Much research has examined the impacts of land use changes on hydrological processes in the 

tropics (Bonell and Bruijnzeel, 2005; Monfreda et al., 2005; Chaves et al., 2008; Wohl et al., 2012; 

van Meerveld et al., 2019), but experimental research conducted in undisturbed forested areas 

is limited (see Zhang et al., 2010 as an exception and a global review by Zimmermann et al., 2012), 



 
 

particularly in humid tropical forests with a geomorphology of volcanic origin (e.g. Muñoz-Villers 

and McDonnell, 2012; Solano-Rivera et al., 2019). The natural dynamics of hydrological processes 

and runoff generation are relatively unknown in humid tropical environments despite some early 

work that goes back to the late 1970s by Bonell and Gilmour (1978). Furthermore, the tropics are 

generally characterized by high rainfall rates (Chang and Lau, 1983), which - even under 

undisturbed vegetation cover - can result in high runoff ratios caused by surface flow, and 

subsequently high streamflows with substantial material transport (Cassells et al., 1985; Thomas, 

1994). In such catchments, the rainfall-runoff dynamics tend to be flashy and variable due to 

rapid meteorological changes and to heterogeneities in the material properties of soils and 

bedrock interacting with a dense vegetation. Low hydraulic conductivity of shallow soil layers, as 

observed for instance in a lowland rainforest catchment in Panamá (Zimmermann et al., 2012), 

can influence the runoff generation processes with surface flow emerging as a prominent 

mechanism. However, the literature meta-analysis of Barthold and Woods (2015) showed that 

most of the analyzed tropical catchments were dominated by sub-surface stormflow and runoff 

generation. 

 

Studies on runoff generation mechanisms and flow pathways in the tropics, as reviewed by 

Elsenbeer (2001) and later summarized by Barthold and Woods (2015), typically use hydrometric 

data to characterize the rainfall-runoff relationships together with infiltration measurements and 

soil physical characteristics, but also often rely on tracer data. Many studies have included stable 

isotopes of oxygen-18 and deuterium among other conservative tracers such as electrical 

conductivity and chloride (Leibundgut et al., 2009 for a general reference), but also increasingly 



 
 

other solutes and even trace elements (Newbold et al., 1995 for an example from Costa Rica; 

Bücker et al., 2010; Shanley et al., 2011; Wymore et al., 2017). Stable isotope tracers have mostly 

been used to assess old and new water contributions to streamflow (Barnes and Bonell, 1996; 

Scholl et al., 2015) and geochemical tracers to determine geographic and/or source waters from 

different profiles of litter leachate, soil and groundwater and their respective contributions to 

streamflow (e.g. Elsenbeer et al., 1995). 

 

Uncertainties of tracer-based hydrograph separation and mixing analyses have often been 

related to large spatiotemporal variations in the chemical signature of source waters contributing 

to streamflow. Using multiple tracers can help reduce uncertainties and avoid false conclusions 

about the hydrological functioning of catchments (e.g. Barthold et al., 2011; Correa et al., 2019). 

In addition to geochemical tracers, radioactive isotopes (e.g. tritium) can be used to assess 

deeper and older flowpaths to streams, as illustrated by Genereux et al. (2009) and Solomon et 

al. (2010) who detected regional groundwater flowing into surface water in a volcanic 

environment of Costa Rica. While the use of multiple tracers can improve our understanding of 

runoff generation and groundwater flow pathways to streams, the choice of an appropriate 

numerical approach to assess source partitions and quantify associated uncertainties is equally 

critical. The end-member mixing analysis (EMMA; Christophersen et al., 1990) has been widely 

used for hydrograph separation, with uncertainties typically quantified using Gaussian error 

propagation (Genereux, 1998) or first-order Taylor series approximation (Correa et al., 2019). But 

the need for models that can cope with both multiple sources and variability within sources has 

prompted the development of more complex, probabilistic models (Phillips and Gregg, 2003; 



 
 

Stock et al., 2018; Beria et al., 2020). Model frameworks such as MixSIAR use Bayesian 

hierarchical modelling techniques and compositional data transformation to assess the likelihood 

of source proportions (Stock et al., 2018). An increasing number of studies has used Bayesian 

theory to assess water sources to streams (e.g. Beria et al., 2020; Birkel et al., 2020; Duvert et al., 

2020), but a systematic comparison of the relative performances of the EMMA and Bayesian 

approaches is still lacking (He et al., 2020). 

 

In an attempt to fill the above identified knowledge gaps, we focused our efforts on a short-term, 

intense experimental campaign similarly to Riveros-Iregui et al. (2018). We collected high-

resolution (roughly 8-hourly) streamwater tracer data in the San Lorencito catchment, a 3.2 km2 

tropical pristine headwater located in the Volcanic Cordillera of Tilarán, Costa Rica. The 

monitoring included soil, stream, throughfall, rocks, and stream tributary tracer data collection 

complemented by high temporal hydro-climatic data. Earlier tracer-aided modelling work at the 

same study site (STARRtropics) using stable water isotope tracers by Dehaspe et al. (2018) 

suggested a surficial system with little resilience to impacts. We now attempt to test this model-

based hypothesis and explore when, how and where runoff is generated in humid tropical 

volcanic environments. For this, we combine experimental tracer data, hydrograph separation 

techniques, two linear mixing models and baseflow transit time analysis with tritium. Our specific 

objectives are: 

i) Combine high resolution tracer sets and hydro-climatic data in a mixing model 

framework to assess the dominant flow pathways in a relatively data scarce pristine 

rainforest catchment. 



 
 

ii) Compare EMMA with a Bayesian mixing model approach to evaluate the uncertainty 

in geographical source waters and their respective spatio-temporal contributions to 

the mixture in streamflow. 

 

2. Study area, data and methods 

2.1 The biological reserve Alberto Manuel Brenes (ReBAMB) study catchment 

The San Lorencito headwater (3.2 km2) catchment is located in the Volcanic Cordillera of Tilarán 

at the continental divide in Costa Rica, Central America (Figure 1) and drains towards the 

Caribbean Sea. This protected (Biological Reserve) and pristine (no historic logging) pre-montane 

rainforest catchment is typical of tropical volcanic (1 to 7 Million years old with mainly basaltic 

and andesitic rocks) regions. The geomorphology is characterized by deeply incised V-form 

valleys and highly dynamic streams emphasized in Figure 1 with hillslope B exhibiting steeper 

stream slopes compared to hillslope A (Table 1). The geomorphological difference between both 

hillslopes is reflected in higher terrain ruggedness according to Riley et al. (1999) and sediment 

transport indices (Moore and Burch, 1986) for the monitored sub-catchments on hillslope B over 

A (Table 1). The San Lorencito stream is marked by a geological normal fault with the northern 

hillslope A sliding under the steeper southern hillslope B. The elevation ranges from 870 m to 

1470 m with a mean slope of 22° (Table 1). The main channel of the San Lorencito stream has a 

length of 3.2 km and a mean river slope of 20.5° (16° for sub-catchment tributary on hillslope A 

and 22° for sub-catchment tributary B). The main soils in the catchment are porous (average 

porosity of 84%, soil density average of 0.4 g/cm-3) with high infiltration capacities beyond 100 

mm/h and an average saturated hydraulic conductivity (kSAT) of 95 mm/h (standard deviation of 



 
 

70 mm/h). Soil density increases with depth but is always < 0.85 g/cm-3 and the hydraulic 

conductivity decreases with depth with a minimum measured kSAT of 20 mm/h at 90 cm depth 

at one soil moisture sensor on hillslope A.  The paleo Andisols (loamy sands) and less developed 

Entisols with a mean depth of 0.7 m developed on top of a weathered and likely deep regolith 

(deeper soils on hillslope A compared to B). The soil texture in the sub-catchment on hillslope A 

is on average less coarse (sand 57%, loam 24%, clay 19%) compared to the steeper sub-catchment 

on hillslope B (sand 69%, loam 17%, clay 13%). The vegetation density seems to be linked to the 

topography, as suggested by higher leaf area indices (LAI) on the lower slopes of hillslope A (sub-

catchment average of 3.2) compared to an average LAI of 1.8 in the sub-catchment on hillslope 

B (Figure 1).  

 

The catchment is characterized by an annual average rainfall of around 2.8 m/year that ranges 

from 2 to almost 4 m/year for particular years with a relatively low annual potential 

evapotranspiration of around 0.5 m/year and a moderate dry season from February to April. The 

mean annual temperature is slightly below 21°C and the relative humidity is constantly high at 

close to 100%. More detailed information about the catchment characteristics can be found in 

Dehaspe et al. (2018) and Solano-Rivera et al. (2019). The catchment and research station are 

managed by the University of Costa Rica (UCR) for the Costa Rican National Park Conservation 

Authority (SINAC) and forms part of the Alberto Manuel Brenes Biological Reserve (ReBAMB) with 

restricted access only for research. The baseline hydro-meteorological measurements are 

located next to the San Lorencito stream and have been recorded since June 2015 (Figure 1). 

 



 
 

Figure 1: The regional context of the San Lorencito study catchment with monitored sub-

catchment tributaries located on hillslopes A and B, automatic weather station in the forest used 

for this measurement campaign (blue circle), soil moisture (blue rectangles) and sampling (black 

triangles) locations, topography and a satellite-derived leaf area index (LAI) map (Dehaspe et al., 

2018). The catchment outlet hydrometric and chemistry monitoring station is shown with the red 

triangle. 

 

Table 1: Catchment, hydro-meteorological and geomorphologic summary statistics of the San 

Lorencito catchment and the monitored sub-catchment tributaries on hillslopes A and B. 

  Total catchment (Q1) Sub-catchment A (north) Sub-catchment B (south) 
Descriptor Unit Mean [Range] Mean [Range] Mean [Range] 
Area km2 3.2 0.21 0.15 
Topography 
Elevation 
Slope 
Drainage Density (1:200000) 
Stream Slope 
Sediment Transport Index 
Terrain Ruggedness Index 

 
m.a.s.l. 
° 
km/km2 
° 
- 
- 

 
1133.5 [873.7-1472.4] 
22.3 [0.15-52] 
0.016 
20.5 
0.37 [0-39] 
1.63 [0.01-5.03] 

 
1015 [878 – 1153] 
16.4 [5-63] 
0.0039 
16.3 
0.20 [0 - 6.11] 
1.5 [0.02 - 4.1] 

 
1022 [878 – 1148] 
16.8 [9-68] 
0.0046 
21.8 
0.55 [0 - 26.2] 
1.8 [0.1 - 4.3] 

Hydroclimatic (2015-2018) 
Annual P  
Annual PET  
Annual Q 

 
mm 
mm 
mm 

 
2789 [1935-3787] 
490 [332-579] 
2099 [1343-2446] 

  

 

2.2 Data collection and analytical methods 

An in-situ sensor measured water level (Global Water WL400-015-025) in an accessible and 

protected section at the outlet of the San Lorencito catchment (Figure 1). The sensor was 

installed and routinely cleaned and checked for drift. Data were stored every 5 minutes using a 

Global Water GL-500 logger (precision of ±5 mm). Meteorological data (throughfall, temperature, 

humidity, radiation, pressure, wind direction and speed) were measured using a HOBO station 



 
 

located within the forest (890 m a.s.l) at a distance of 50 m from the stream (weather station in 

Figure 1). We previously assessed the spatial variability of meteorological inputs along a 400 m 

elevation gradient of the catchment and found relatively limited variations (Dehaspe et al., 2018; 

Solano-Rivera et al., 2019). Throughout the entire monitoring period, manual discharge gaugings 

(salt dilution and current meter) of the main stream at the outlet and of the two tributaries were 

performed weekly and on an occasional event-basis. The gaugings taken at the outlet were used 

for the construction of a rating curve that converts measured water level into discharge (Solano-

Rivera et al., 2019). The rating curve for the main stream was adjusted to match the annual water 

balance. Soil moisture was measured at 15 min intervals with Odyssey multi-profile sondes 

configured to register at 10 cm, 30 cm, 50 cm, 70 cm and 90 cm depths and a resolution of ±0.01 

%. Sondes were installed along two opposite hillslope transects of the sub-catchments on 

hillslopes A (3 sondes) and B (2 sondes) and calibrated with in-situ soil physical measurements of 

texture and saturated hydraulic conductivity per depth increment (Figure 1).  

 

Streamwater samples for tritium analysis were collected at progressively lower flows in February, 

March and April 2018 (streamflow at the outlet decreased from around 100 L/s in February to a 

minimum of 45 L/s in April showing an increase in electrical conductivity from 30 μS/cm to 80 

μS/cm) and analyzed at the Australian Nuclear Science and Technology Organisation (ANSTO) in 

Sydney. Event and monthly rainfall samples (500 to 1 L) were collected for tritium analysis from 

2015 to 2017 at the Universidad Nacional, (UNA) in Heredia, stored in a fridge immediately and 

sent for analysis to the International Atomic and Energy Agency (IAEA) isotope laboratory in 

Austria, Vienna. Streamflow and rainfall samples were distilled and electrolytically enriched 



 
 

(between 67- and 70-fold) prior to counting with a liquid scintillation counter for several weeks. 

The limit of quantification was 0.07 tritium units (TU) for all samples, and analytical precision was 

between ±0.03 and ±0.06 TU for streamflow and between ±0.05 and ±0.18 TU for rainfall. 

 

Streamwater samples were collected manually for trace element analysis (14 samples) in the San 

Lorencito main stream at the outlet over a four-week period from 24th May to 18th June 2017, 

right after the start of the rainy season in April. Manual sampling in the main stream was 

complemented with an automatic ISCO 3700 water sampler programmed to retrieve samples 

over an eight-hour cycle (28 samples used for analysis). Additionally to the main stream sampling, 

we also manually monitored two hillslope tributaries (A and B; Figure 1). At the northern sub-

catchment tributary A, we manually collected 10 samples and at the southern sub-catchment 

tributary B, we collected 12 samples simultaneously with the main stream. Unfortunately, it was 

only possible to collect a single composite throughfall sample over two weeks from 25th May to 

7th June using a PALMEX device (Gröning, 2012) at the weather station location in the forest. We 

also milled the dominant bedrock (three replicate Andesites and pyroclastic lava flow samples) 

and prepared a solution with distilled water for analysis after continuously stirring at average 

stream temperature of 20°C for 24 hours, assuming this would represent natural conditions of 

waters in contact with weathered rock. 

 

Soil samples for trace element analysis were collected at three soil profiles covering the elevation 

gradient at both sub-catchments of hillslopes A and B in the first week of June 2017 (Figure 1). 

Three depth-averaged samples at each hillslope were taken at 10 cm and 40 cm corresponding 



 
 

to the organic Ah horizon and a mineral Bv horizon of the volcanic Andisol or Cambisol soils. Solid 

samples (0.5 kg) were stored in Whirl Packs and refrigerated at 4°C until analysis. In the 

laboratory, three replicate solid soil samples (10 g of fresh homogenized soil material) were 

mixed with 100 mL water (1:10 ratio) and shaken for 24 hours. Then, the suspension was vacuum-

filtered (0.45 µm) and the leachates stabilized with 60% pure nitric acid for element analysis (35 

solutes) with an Inductively Coupled Plasma Mass Spectrometer (ICP-MS; Agilent 7700, Germany) 

in the geochemical laboratory at the Technical University of Brunswick, Germany. The quality of 

the measurements was controlled by a river water reference material (LGC6019) with known 

concentrations for the solutes used. Deviation of measured concentrations from the reference 

was always < 1.6% and always within the given standard deviation (Balzer et al., 2020). The latter 

analytical method was applied to all liquid, soil and stream samples. 

 

2.3 Tracer-based mixing, hydrograph separation and transit time models 

Baseflow digital filter: 

A simple baseflow separation was conducted using the one-parameter recursive digital filter 

according to Arnold and Allen (1999). The filter parameter 𝛼𝛼 was hereby fixed at 0.925 as 

proposed by Nathan and McMahon (1990): 

 

𝑄𝑄𝑄𝑄(𝑡𝑡) = 𝛼𝛼𝑄𝑄𝑄𝑄(𝑡𝑡 − 1) + 1+𝛼𝛼
2
�𝑄𝑄(𝑡𝑡) − 𝑄𝑄(𝑡𝑡 − 1)�     Eq. 1 

 



 
 

The baseflow fraction Qb is derived from total streamflow Q minus surface or quickflow Qs. The 

calculated digital filter baseflow was then compared to two tracer-based, linear mixing 

approaches, (1) the traditional EMMA and (2) a model based on Bayesian theory (MixSIAR). 

 

End Member Mixing Analysis (EMMA) and selection of tracers: 

We used End Member Mixing Analysis (EMMA) (Hooper, 2003) for the identification of 

geographical water sources and their contribution to the river. This methodology assumes that a 

stream is a mixture of geochemical signatures of sources (Christophersen et al., 1990) following 

a linear mixing process (Hooper, 2001). The river observations should ideally be bounded by the 

selected sources, however, when the observations fall outside the mixing diagram of the water 

sources these are projected onto the domain in order to avoid negative contributions (Liu et al., 

2004). The latter can occur due to input-data uncertainty or time and space-dependent end-

member variability (Chaves et al., 2008). A key point for the reliable use of EMMA is that tracers 

should be conservative and not be involved in adsorption or biological processes (Hooper, 2001). 

From a suite of elements almost spanning the periodic table, we assumed that the tracers Ca, K, 

Fe, Mg and Na behave conservatively based on tracer versus tracer bivariate scatter plots from 

stream data (Barthold et al., 2011; James and Roulet, 2006) with negligible co-linearity (selection 

criterion: R2 value >0.5; p-value <0.01). The co-linearity analysis followed a principal component 

analysis (PCA) and residual error plots to assess the dimensionality of the hydrological system 

according to Hooper (2003). Mg and Na were excluded from our analysis because these tracers 

were not available for the bedrock end-members. The lowest residuals between the projected 

and original stream tracer values with a random distribution defined the system dimensionality 



 
 

(Hooper, 2003; James and Roulet, 2006) (see Figure 2). The source end-members were projected 

into a PCA-space generated from stream samples and used to calculate water source 

contributions to the stream. For a detailed description of the methodology, readers are referred 

to Christophersen et al. (1990). Uncertainties in source contributions were calculated based on 

first-order Taylor series approximation (Phillips and Gregg, 2001; Correa et al., 2019). The water 

source proportions in streamflow were estimated over the four-weeks monitoring campaign 

overall, and for each event separately using the selected conservative tracers Fe, Ca and K. The 

source end-members considered were (i) throughfall, (ii) shallow soils at 10 cm, (iii) deeper soils 

at 40 cm depths and (iv) bedrock. The same source contributions were tested for both monitored 

sub-catchment tributaries on hillslopes A and B. Our assumptions related to the source end-

members were, firstly, that the two-weeks composite throughfall sample is representative of the 

complete four-weeks study period (time-invariance) and of the catchment (space-invariance). 

Secondly, the soil end-members are assumed time-invariant over the study period.  

 

Figure 2: Bi-variate plots (upper row) of conservative tracers and resulting unstructured residual 

error plots of Fe, Ca and K stream chemical parameters (lower row) aiding selection of 

conservative tracers without structure in the residuals. 

 

Bayesian mixing model (MixSIAR): 

As a second tracer-based approach to hydrograph separation, we used the R package MixSIAR 

(Stock and Semmens 2016; Stock et al. 2018), which implements linear mixing equations in a 

Bayesian framework. We chose MixSIAR because it has the ability to incorporate source 



 
 

variability and to provide robust assessments of the likelihood of source proportions through a 

Markov chain Monte Carlo (MCMC) algorithm. As with EMMA, we applied the model to our data 

to determine the relative contributions of each water source to the main stream and tributaries. 

The water source proportions were estimated over the four-weeks monitoring campaign, and for 

each event separately. We considered the same assumptions of time-invariance and 

representativeness of the three sources i.e. throughfall, shallow soil, deeper soil and bedrock, 

and used the three tracers previously identified as conservative tracers (Fe, Ca and K). We used 

generalist priors (α set to 1 for each source) and ran 100,000 iterations of the MCMC loop (burn-

in 50,000), which allowed us to obtain 3,000 posterior density estimates for each source 

contribution. In the results, we report the median and distribution (interquartile range and 5th-

95th percentiles) from these 3,000 estimates. 

 

Baseflow mean transit time model: 

In addition to the short-term, high-resolution measurement campaign in 2017, we assessed 

potential deeper flow pathways by estimating water transit time under low baseflow conditions. 

The baseflow transit time is assumed to reflect the mean age of groundwater contributing to the 

stream. Transit time was obtained using three streamwater tritium (3H) samples collected at 

progressively lower flows during the dry season from February to April 2018. In absence of 

measured long-term tritium data in rainfall in Central America, we reconstructed an input 

function for the transit time model derived from monthly 3H measurements in rainfall from the 

nearest northern Hemisphere stations at Menlo Park, California, Miami, Florida and Ocala, 

Florida (IAEA-GNIP database, 2019). This averaged input function was forced to match 3H 



 
 

measurements in rainfall from Costa Rica for the years 2015 to 2017. We used monthly 

precipitation volumes from the NCEP global rainfall product (Willmott and Matsuura, 2001) from 

1949 pre-bomb peak until December 2018, which was previously found to match observed 

rainfall over Central America (Muñoz-Jiménez et al., 2018). The time-invariant transit time 

distribution function (g) was driven by this input function (Cin) and adjusted to match our 

streamflow 3H measurements (Cout), using a convolution integral (Małoszewski and Zuber 1982): 

 

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = ∫ 𝐶𝐶 (𝑜𝑜−𝑜𝑜𝑒𝑒)∞
0 𝑃𝑃(𝑜𝑜−𝑜𝑜𝑒𝑒)𝑒𝑒−𝜆𝜆𝑡𝑡𝑒𝑒𝑔𝑔(𝑜𝑜𝑒𝑒)𝑑𝑑𝑜𝑜𝑒𝑒

∫ 𝑃𝑃(𝑜𝑜−𝑜𝑜𝑒𝑒)∞
0 𝑔𝑔(𝑜𝑜𝑒𝑒)𝑑𝑑𝑜𝑜𝑒𝑒

       Eq. 2 

 

where te is time of entry in the catchment, e-λte is a decay term that accounts for 3H decay once 

in the ground (λ = 1.54x10-4 days-1), and P is monthly precipitation. We used a versatile two-

parameter Gamma model as transit time distribution function (g). The range of best-fit Gamma 

model parameters α (dimensionless shape) and β (scale in months) were identified using 100,000 

Monte Carlo simulations in the range [0 – 3] for α and [1 – 5000] for β. Each simulation was 

evaluated using the mean absolute error (MAE) between the model outputs and measured Cout 

values. We kept the absolute minimum MAE simulation for visualization and the 10 % lowest 

MAE simulations assessing the range of possible baseflow ages. All analyses were performed 

using the R statistical language (R development team, 2019). 

 

3. Results 

3.1 Rainfall-runoff response 



 
 

We selected the five highest magnitude rainfall-runoff events out of ten  runoff responses to 

rainfall input over a four-week monitoring campaign in May/June 2017 (Figure 3; Table 3). Event 

2 exhibited the highest throughfall magnitude of 61 mm over 6 hours with a maximum intensity 

of over 30 mm/h resulting in a peak discharge of 3.8 m3/s, followed by Event 1 (34.4 mm), Event 

5 (17.8 mm) and Event 3 (15.6 mm) (Table 3). The streamflow response of event 2 had an 

estimated return period of three months based on the total 3.5 years streamflow record. The 

streamflow response to throughfall inputs was relatively quick with a lag time of around 30 min, 

in line with Solano-Rivera et al. (2019). Minimum streamflow was at around 120 L/s right before 

the first event and receded back to 125 L/s at the end of the campaign. Soil moisture showed a 

rapid response to throughfall inputs at both averaged 10 cm and 50 cm depths resembling the 

streamflow dynamics (Figure 3b). The deeper soil moisture dynamics at 50 cm were dampened 

compared to the dynamics at 10 cm depth (Figure 3b). Generally, the sub-catchment on the 

northern hillslope A retained slightly more soil moisture compared to B and sub-catchment A 

demonstrated a threshold-effect with sudden increase in soil moisture content at 50 cm after a 

certain rainfall volume entered the system during event 2. According to the applied digital 

baseflow filter results, the baseflow contribution sharply decreased at peak flow to close to zero, 

indicating a large dominance of potential surface runoff during events (Figure 3c). 

 

3.2 Tracer concentrations in streamflow and end-members 

The measured concentrations of all sampled water (throughfall, mainstream, tributaries, soils 

and rocks) are given in Table 2. The Fe concentrations increased in streamflow during runoff 

events, particularly for events 1 and 2, from slightly below 1 μg/L to a maximum of above 5 μg/L 



 
 

during event 2 (mean = 1.44 μg/L). In contrast, K (minimum of 0.6 mg/L on various occasions with 

an average of 0.8 mg/L) and Ca (minimum of 1.8 mg/L during event 2 with an average of 2.3 mg/L) 

decreased with increasing flow (Figure 3d, Table 2). Sub-catchment tributary A showed lower 

average Fe concentrations (1.37 mg/L) compared to the mainstream and tributary B had higher 

average concentrations (1.6 mg/L). A similar trend was observed for K concentrations (0.75 mg/L 

at tributary A and 1.2 mg/L at tributary B), whereas tributary A showed higher Ca concentrations 

(4 mg/L) and tributary B lower Ca concentrations (0.34 mg/L) compared to the main stream. The 

soil samples had higher Fe concentrations, but lower Ca and K concentrations compared to the 

stream and tributaries, and in throughfall we observed higher Fe and K concentrations compared 

to the stream and tributaries (Table 2). The large differences in concentrations between different 

water sources enabled the following mixing model analysis.  

 

Figure 3: Time series plots of the four-weeks sampling period from 24th May to 18th June 2017 

showing a) 30 min throughfall, air temperature, b) averaged soil moisture at 10 cm and 50 cm 

depth for each sub-catchment on hillslope A and B and c) streamflow at the outlet with a digital 

filter derived baseflow fraction. The last panel d) shows the three selected tracer (Ca, K, Fe) 

concentration time series in streamflow at the outlet. 

 

Table 2: Summary statistics (mean [standard deviation]) of selected conservative tracers in all 

potential sources (averaged shallow and deeper soil leachates A and B and 2-week composite 

throughfall) and the mixture (main stream Q1, tributaries A and B). 

 Fe (µg/L) Ca (µg/L) K (µg/L) n* 
SOURCES 



 
 

Throughfall 1.8 1330 2030 1 
Soils A (right) 6.03 [12.6] 1500 [1650] 340 [420] 11 
Soils B (right) 5.8 [9.8] 1610 [1570] 3 [400] 13 
Andesite  
Pyroclastic lava flow 

205  
141  

166400 
22420 

6240 
2793 

1 
1 

MIXTURES 
Main stream Q1 1.44 [2.36] 2257.5 [146] 802.4 [63.8] 42 
Tributary A (right) 1.37 [0.97] 3990 [0.17] 750 [75] 10 
Tributary B (left) 1.6 [0.92] 3430 [280] 1150 [140] 12 

*n represents the number of samples  

 

3.3 Estimating water source contributions to mixtures with EMMA and MixSIAR 

The EMMA mixing diagram shows the source waters in relation to streamflow and to sub-

catchment tributaries A and B (Figure 4). Outlet streamflow samples plotted within the mixing 

triangle of throughfall, shallow and deeper soil water samples, with only a few samples falling 

outside the triangle. The EMMA analysis was based on the median and standard deviation of 

measured concentrations in water sources (Table 2) and individual stream mixtures. The two 

principal components captured 84% of the total observed variance. Our data for the tributaries 

plotted slightly outside the EMMA space, with sub-catchment tributary A scattered closer to the 

shallow soil water samples and the sub-catchment tributary B scattered between throughfall and 

shallow soil. The potential source component of bedrock (Table 2) as an indicator for 

groundwater contact time was discarded due to the higher concentrations (several orders of 

magnitude) in these samples compared to streamwater and tributaries. The source component 

of rocks plotted therefore far outside the mixing diagram. Although mathematically possible, the 

bias introduced in the resulting mixing diagram did result in infinitesimal and physically 

unreasonable small contributions to the mixture of this “geological end-member”. 

 



 
 

Figure 4: EMMA mixing diagram using ordered Eigenvectors and source water contributions 

(throughfall, shallow and deep soils) to the main stream and both sub-catchment tributaries A 

and B, explaining 84% of the total variance. The error bars represent the first standard deviation 

of measured concentrations. The single composite throughfall sample was assigned a standard 

deviation of one.  

 

Spatial variability of source water contributions: 

The two mixing models EMMA and MixSIAR generally showed comparable results, particularly 

for the median source water contributions (Figure 5). The shallow soil flow pathway dominated 

streamflow contributions in the main stream (median 39% and 49% based on EMMA and 

MixSIAR, respectively), followed by the deeper soil (32% and 31%) and throughfall (25% and 

19%). The steeper tributary B did not exhibit a detectable deeper soil component according to 

EMMA, and below 10% with the Bayesian model. The shallow soil water together with throughfall 

were the most important contributing sources to tributary B according to EMMA, while MixSIAR 

identified the shallow soil water as the sole most important source to tributary B (Figure 5). Both 

methods agreed on the shallow soil water as the most important source contribution (end-

member) to the less steep and with deeper, more developed soils sub-catchment tributary A, 

which consisted of around 80% shallow soil, 10% throughfall and some minor deeper soil 

contribution (<10%). The EMMA model performed less well for the tributaries (throughfall for 

tributary B and shallow soil for tributary A are mathematically beyond the physically possible 0-

100 % range) due to the high number of tributary samples falling outside the mixing diagram, 

whereas MixSIAR properly dealt with this issue as it yielded lower uncertainties for tributaries.  



 
 

 

Figure 5: The EMMA (upper panel) and MixSIAR (lower panel) derived source water contributions 

to the main stream at the outlet, sub-catchment tributary A and B. The boxplots represent the 

distribution of potential source water contributions derived by a Bayesian approach for MixSIAR 

and a Taylor series approximation for EMMA. Throughfall (light blue), shallow (brown) and deep 

(yellow) soil source waters are similarly color coded throughout the paper. The boxes show the 

median and 25th/75th percentiles with the whiskers indicating the 5th/95th percentiles. The 

crosses point out absolute extreme values. 

 

Temporal variability of source water contributions: 

The time-invariant throughfall and soil water sources were interpolated to estimate event source 

water contributions using EMMA and MixSIAR. Both methods showed a relatively good 

agreement overall (Figure 6) with the exception of the first two streamflow events. For events 1 

and 2, MixSIAR estimated a larger deep soil water contribution (close to 50%) compared to 

EMMA (only about 20-25%). Despite comparable overall median percent contributions, EMMA 

showed a decreasing trend for shallow soil contributions with decreasing event magnitude 

(events 3, 4 and 5 in Figure 6), while the Bayesian model estimated a relatively constant shallow 

soil source for events 3, 4 and 5. Both methods suggested that shallow soil was the most 

important flow pathway across streamflow events of different magnitude. If shallow and deeper 

soil sources were combined to form the baseflow component of streamflow (Table 3), both 

mixing models predicted, on average, 80% of baseflow for the five events occurring during the 

four-week period. The EMMA model resulted in a higher temporal baseflow variability compared 



 
 

to MixSIAR as evidenced by a higher standard deviation calculated for the five events (13% 

compared to 2%, respectively). In contrast, the baseflow digital filter resulted in 35% average 

baseflow with 30% standard deviation (Table 3) due to an overwhelming quick flow contribution 

to the larger storm events.  

 

Figure 6: a) EMMA and b) MixSIAR interpolated hydrograph separation time series and source 

water contributions for each of the five events separately assuming time-invariant end-members 

(same color code as in previous plots). 

 

Table 3: Rainfall-runoff event characteristics of the sampling period in terms of magnitude 

(Ptotal), duration, maximum intensity (Imax), time lag between peak throughfall and runoff 

(P_Qlag), average event baseflow fraction using a digital filter (Qbf@Qp), using EMMA (Qbe@Qp) 

and MixSIAR (Qbm@Qp) with the latter two methods accounting for baseflow as the sum of 

shallow soil plus deeper soil water contributions. 

Event Ptotal 
(mm) 

Duration 
(h) 

Imax 
(mm/h) 

Qp 
(m3/s) 

P_Q lag 
(h) 

Qbf@ Qp 
(-) 

Qbe@Qp 
(-) 

Qbm@Qp 
(-) 

1) 27/05 34.4 2.5 27 1.2 0.5 0.09 0.94 0.81 
2) 28/05 61.8 6.5 34.6 3.83 0.5 0.06 0.82 0.85 
3) 02/06 15.6 5 5.6 0.72 0.5 0.25 0.87 0.83 
4) 05/06 10 1 10 0.45 0.5 0.67 0.78 0.81 
5) 10/06 17.8 4 8.4 0.41 1 0.66 0.59 0.82 
AVG 27.92 3.80 17.12 1.32 0.60 0.35 0.80 0.82 
STD 21.01 2.14 12.87 1.44 0.22 0.30 0.13 0.02 

 

Table 4 gives the generally comparable uncertainties for both mixing models and the three water 

sources using the median and the 25th/75th percentiles corresponding to the boxes in Figures 5 

and 6.  



 
 

 

Table 4: Uncertainty ranges of event source water contributions (%) for deeper soils, shallow soils 

and throughfall determined for EMMA and MixSIAR (sources are ordered identical to Figure 6 

from deeper, shallow soil to throughfall). 

   Event 1 Event 2 Event 3 Event 4 Event 5 
  Source Median Q25 Q75 Median Q25 Q75 Median Q25 Q75 Median Q25 Q75 Median Q25 Q75 

EM
M

A 

Deep soil 22.4 18.4 28.5 32.1 21.2 33.7 27.9 23.1 29.0 31.7 31.6 31.7 37.7 33.0 42.5 
Shallow soil 72.4 62.9 77.2 49.1 46.2 57.5 57.1 54.0 68.0 46.4 40.7 52.1 31.3 25.0 38.6 
Throughfall 5.7 2.9 9.7 17.7 15.0 20.7 15.0 8.6 17.1 22.0 16.3 27.8 31.3 20.4 33.2 

M
ix

SI
AR

 Deep soil 43.2 38.9 52.3 43.9 36.7 68.6 35.3 31.6 48.2 32.4 30.7 34.1 34.6 31.5 37.9 
Shallow soil 38.6 30.0 44.6 39.8 21.6 44.8 46.5 37.6 49.4 48.9 48.6 49.2 49.8 48.5 50.8 
Throughfall 18.4 15.8 21.2 15.9 9.8 19.1 18.5 14.5 19.3 18.6 17.3 20.0 15.3 13.7 18.9 

 

3.4 Tritium-derived baseflow mean transit time as deeper flowpath indicator 

The potential for a deeper and older groundwater contribution to baseflow was assessed with 

tritium age dating. Tritium activity in the stream decreased with decreasing flow (from 0.99 TU 

in February to 0.78 TU in April with analytical errors of around 0.05 TU), suggesting that the 

baseflow contribution became progressively older. However, because these streamflow values 

were largely comparable to our most recent tritium measurements in rainfall in Costa Rica (in the 

range of 0.7 to 1.5 TU), baseflow was unlikely to originate from deep groundwater sources older 

than 60 years (approximate detection limit of tritium). This assumption is confirmed by our mean 

transit time (MTT) modelling: we found that the baseflow MTT ranged from 2 to 4.4 years, with 

a best-fit MTT of 2.7 years (Figure 7). The best-fit gamma model parameters were alpha = 1.3 (-) 

and beta = 25 months. Such a shorter baseflow MTT only supported a surficial flow path 

dominated system, with little older water derived from deeper storage below 50cm soil depth 

contributing to sustain baseflow over prolonged dry periods. 



 
 

 

Figure 7: The best-fit tritium-based mean transit time (MTT) estimate of baseflow in the San 

Lorencito stream (Qsim_TU) using reconstructed long-term monthly precipitation volumes (NCEP 

re-analysis product) and tritium measurements from nearby IAEA stations (Florida and California) 

merged with recent rainfall measurements in Costa Rica (P_TU) fitted to match the observed 

tritium in streamflow at the outlet (Qobs_TU). 

 

4. Discussion 

4.1 Dominant flowpaths and runoff generation in tropical rainforest catchments 

The ongoing debate about the dominant flow pathways generating streamflow in the humid 

tropics dates back to the 1970s. Bonell and Gilmour (1978) showed for their Babinda catchments 

in eastern Australia, using various methods including tracer approaches, that Hurricane-induced 

extreme rainfall generated surface flow via both infiltration excess (Horton) and saturation 

excess overland flow. Saturation excess overland flow was also observed in Panamanian lowland 

rainforests due to low soil hydraulic saturated conductivities, high soil density and low 

permeability below 20 cm depth (Godsey et al., 2004; Zimmermann et al., 2012). Despite a similar 

rainfall regime, the San Lorencito catchment is of an exclusively volcanic origin resulting in more 

permeable Andisols as opposed to the sedimentary siltstone geology and older finer grained and 

much less permeable Ferric Cambisols in these Panamanian catchments. The importance of 

saturated hydraulic conductivity was emphasized by Johnson et al. (2006) who showed that the 

permeability of shallow soil layers plays a major role in regulating runoff generation processes in 

Amazonian headwater catchments. In a land use change context, Ziegler et al. (2008) and Chaves 



 
 

et al. (2008) also observed overland stormflow in a Thai and a Brazilian catchment, respectively, 

with a clear increase of surface runoff generation after forest clearance compared to pasture and 

forest. Recently, van Meerveld et al. (2019) reported a slowing of surface runoff generation with 

forest recovery in a Philippine catchment. Similar to our results, lateral sub-surface runoff 

generation and zero surface flow were observed in tropical rainforest catchments on more 

permeable volcanic substrates such as in Mexico (Muñoz-Villers and McDonnell, 2012) and 

Puerto Rico (Scholl et al., 2015).  

 

Our steep, volcanic study site on permeable Andisols in northeastern Costa Rica fell in the above 

category of dominant sub-surface flow pathways, albeit slightly shallower compared to Muñoz-

Villers and McDonnell (2012) (on average 44% of shallow soil water and 22% throughfall 

contributions to the main stream), which according to the meta-analysis of Barthold and Woods 

(2015) prevails in the tropics. Even though rainfall intensities (>40 mm/h) can be extreme in San 

Lorencito, the measured infiltration capacities (>100 mm/h) always exceed the physically 

probable maximum rainfall intensity, and Horton infiltration excess overland flow can be safely 

excluded as a likely surface runoff generation mechanism. Nonetheless, Solano-Rivera et al. 

(2019) identified a hillslope-stream connectivity in the most extreme rainfall events as evidenced 

by soil erosion and transport of materials to the stream, which indicates that some version of 

saturated conditions and overland flow may occur. The most obvious mechanism of such a 

surface flow path is saturation excess runoff. The mixing model results presented here do not 

directly support a saturation excess runoff generation mechanism and we preferred to refer to 

dominant near-surface flow pathways similar to Tetzlaff et al. (2014). Generally, the soil physical 



 
 

characteristics play a crucial role in determining the dominant runoff generation mechanisms and 

flow pathways even under undisturbed forest cover and independent of terrain slope in the 

tropics, as recently pointed out by Wymore et al. (2017), reviewed earlier by Elsenbeer (2001) 

and critically appraised by Bruijnzeel (2004). Our spatial comparison between the sub-catchment 

tributaries A and B supports the soil control on near-surface runoff generation in pristine 

rainforests, which according to Zimmerman et al. (2012) is likely a much more widespread 

phenomenon than previously thought (Sidle et al., 2006). We found a quicker and shallower near-

surface runoff generation in the steeper and more coarse-grained soils of the southern sub-

catchment tributary B, without indication of much deeper soil end-member contribution, as 

opposed to the less steep northern tributary A with a more significant deeper soil end-member 

contribution to streamflow.     

 

Despite the importance of the critical zone to modulate runoff generation and a widespread 

focus on the stormflow-producing mechanisms and flow pathways in the tropics, it is the deeper 

groundwater contributions to streamflow that sustain low flows over prolonged dry periods 

(Bruijnzeel, 2004). Usually, different tracers are needed to assess such deeper and likely older 

water contributions to streamflow. Stable water isotopes allow estimates of water ages up to 

around 4 years and derived transit time distributions (TTD) are usually less well constrained for 

the older water contributions characterized by the distribution’s tail (e.g. Stewart et al., 2010; 

Birkel et al., 2016). Correa et al. (2020) estimated a mean catchment transit time of less than 6 

months using a tracer-aided rainfall-runoff model in the San Lorencito catchment, indicating a 

dominance of younger water that is quickly supplied to the stream. Genereux et al. (2009) and 



 
 

Solomon et al. (2010) used helium, radiocarbon and chlorine age dating tracers to identify and 

quantify a deeper and old groundwater contribution to a Caribbean lowland catchment at La 

Selva, Costa Rica originating from a regional groundwater flow recharged into very young 

(Pleistocene) volcanic rock. Similarly, we used a few tritium low flow measurements at San 

Lorencito to gain understanding of the range of baseflow ages. We did not find evidence for old 

groundwater at low flows. Despite being a perennial stream with a mean discharge of around 0.3 

m3/s, the San Lorencito discharge decreases significantly over a few weeks of low rainfall to less 

than 50 L/s (absolute observed minimum 20 L/s in April 2016). This is in contrast to tropical 

Andean catchments that maintain a high low flow volume at the end of the dry season due to 

significant groundwater storage and lateral connectivity (Clark et al., 2014). The tritium analysis 

was applied as a complementary tracer to generate a more complete picture of the suite of flow 

pathways and runoff components composing streamflow at high, medium and low flows in line 

with Farrick and Branfireun (2015). Again, the combination of different tracers with hydrometric 

approaches and tracer-aided modelling (Dehaspe et al., 2018; Correa et al., 2020) showed that 

runoff generation and flow pathways composing the San Lorencito streamflow originates in the 

first 50 cm of soil, with the bulk of water being generated in the first 15 cm of soil (shallow layer).  

 

4.2 Comparison of two widely used mixing approaches 

The EMMA approach has been used in hydrology for almost three decades since Christopherson 

et al. (1990). Bayesian approaches of mixing models have been developed more recently with a 

strong focus on ecology and stable isotopes (Parnell et al., 2013), and they are now increasingly 

applied to ecohydrology research (Rothfuss and Javaux, 2017). More widespread use of Bayesian 



 
 

approaches also promoted recent applications of Bayesian mixing models in catchment 

hydrology research (e.g. Beria et al., 2020; Duvert et al., 2020). Bayesian mixing models were 

mainly developed to account for the uncertainty of multiple sources that contribute to a mixture, 

e.g. in plant water use (Walker and Richardson, 1991), that cannot be resolved with analytical 

solutions to simple mass balance equations. Therefore, efforts to include uncertainty estimations 

into mixing models dates back to the early 2000s (Phillips and Gregg, 2001; Soulsby et al., 2003) 

with recent developments by Correa et al. (2019) using Taylor series approximation for multiple 

sources (also used here for comparison). The uncertainty often arises due to the input data and 

temporal and spatial variability of end-members (e.g. James and Roulet, 2006) and the 

mathematical challenge of resolving chemically similar sources contributing to a mixture (Davis 

et al., 2015). Here, we faced the challenge of a single available two-weeks composite throughfall 

sample and a single soil sampling campaign, which led to the assumption of time-invariant source 

end-members. Despite the uncertainty introduced due to the assumption of time and space-

invariance, the composite throughfall sample captured four out of five events analyzed and 

integrated the complete spectrum of rainfall intensity, duration and magnitude (Figure 3 and 

Table 3). We, therefore, expected this composite sample to closely represent the average 

chemical composition of each throughfall event over the measurement period, as supported by 

a seasonal temporal persistence of throughfall solute concentrations found in other tropical 

forests (Zimmermann et al., 2007 and 2008). We also based this assumption on the stable isotope 

composition of the sample (not reported) that resembled the average seasonal value of generally 

much more variable isotopic throughfall composition compared to solute concentrations. 

However, we recognize that a single composite sample is not able to capture the spatial 



 
 

variability of throughfall in tropical forests (Loescher et al., 2002; Holwerda et al., 2006). We still 

used this sample due to the different solute concentrations particularly for Fe and K compared 

to the soil concentrations (Table 2). Furthermore, we assumed wide, un-informative priors for 

the uncertainty analysis of end-members attempting to account for this shortcoming in sampling. 

The resulting impact on the source contributions to a mixture would therefore be limited to the 

reported posterior uncertainty (Table 4). Even with the throughfall end-member shifting beyond 

the established concentration ranges, the explored source contributions would likely enhance 

the shallow soil end-member dominance and further support our conclusion on quick, near-

surface flow pathways. Similarly, we are aware of the potential uncertainty of time-invariant soil 

end-members, but we assumed that the iron-accumulating soils (Balzer et al., 2020) show a 

relatively slow reaction to soil moisture variability and constantly high soil moisture over our 

four-weeks measurement campaign. We, therefore, substituted time with space and 

incorporated the spatially-distributed soil chemical characteristics into the explicit uncertainty 

assessment of both mixing analysis methods. Recognizing the spatial variability of geomorphic 

origin in our study catchment, we investigated two tributaries and their streamwater 

composition with large geochemical differences related to topography, soil depth and texture 

and vegetation density (Figure 5). Similarly, streamwater composition varied over time according 

to the rainfall-runoff response (Figure 6). End-member variability resulted from replicate 

sampling at different locations in both tributary catchments (Hooper, 2001) and were considered 

directly for both approaches and the respective uncertainty estimates (Table 4).  

 



 
 

In our direct comparison of EMMA with MixSIAR, we showed that despite the complexity of 

runoff generation in steep tropical headwaters, the two approaches yielded relatively similar 

water source contributions, similar to Rothfuss and Javaux (2017). This is an encouraging result 

that could pave the way for a more extensive use of Bayesian mixing models in future 

hydrological studies. However, we still report some discrepancies between the two methods. In 

particular, results at the event scale can be significantly different (e.g. event 2 in Fig 6) and EMMA 

seemed to perform better than MixSIAR with lower error bars. We postulate that Bayesian 

approaches are more adapted to larger datasets and less able to represent temporal dynamics 

with a lower number of samples per event, especially when no prior assumption is included in 

the model. However, we also recognize that different Bayesian approaches can perform 

differently. For instance, Beria et al. (2020) found their Bayesian modeling framework to work 

well with small sample sizes. In contrast, for all samples considered to contribute to the main 

stream and the tributaries (Figure 5), MixSIAR resulted in a lower overall uncertainty compared 

to EMMA, as also detected by Rothfuss and Javaux (2017) and He et al. (2020). While He et al. 

(2020) partly attributed the better performance of their Bayesian approach to the use of prior 

distributions, our results show that using generalist priors can also yield robust results. Therefore, 

we believe MixSIAR is a more versatile framework than EMMA when i) a large number of sources 

are assumed, even with only few measured tracers, and ii) some of the stream tracer data 

(mixture) fall outside the EMMA-PCA space (e.g. some tributary samples in Figure 4). 

Nonetheless, the Bayesian approaches have mostly been developed for 2 to 3 stable isotope 

tracers (Parnell et al., 2013), and when large tracer data sets are available, the EMMA approach 

can help with tracer selection and end-member definition as per Hooper (2003). We therefore 



 
 

emphasize the utility of our approach of combining an initial EMMA analysis with a comparison 

using a Bayesian approach. This method could also be used to inform prior distributions for input 

to further reduce uncertainties (Ogle et al., 2014). 

 

5. Conclusions 

We have shown that in the undisturbed San Lorencito rainforest headwater catchment, runoff is 

predominantly generated via shallow soil flow pathways (0-15 cm depth). This finding is in line 

with earlier model hypotheses (Dehaspe et al., 2018) and recent water age estimates of a tracer-

aided model (Correa et al., 2020) that could only simulate the rainfall-runoff and isotope 

response of the stream using fast, near-surface runoff generation algorithms and a younger 

water dominance. We used a rather short, but spatio-temporally intense field measurement 

campaign following Riveros-Iregui et al. (2018) in absence of longer-term and continuous data 

records in the tropics. Despite uncertainties related to assumptions of time and space-invariant 

end-members, we were able to use multiple conservative tracers (Barthold et al., 2012; Correa 

et al., 2017; 2018) and two mixing model frameworks (EMMA and MixSIAR) to examine runoff 

generation and dominant flow pathways in this catchment. We summarize our main findings 

here: 

- EMMA and MixSIAR provided similar water source contributions to the stream mixtures 

and can be considered complimentary methods that inform each other. 

- EMMA is a particularly useful diagnostic tool to select conservative tracers and end-

members, while MixSIAR is more efficient in the case of a larger number of sources. 



 
 

- Additional water age dating with tritium further emphasized the shallow streamflow 

sources with little evidence for older and deeper water contributions to the stream. 

- The application of an ensemble of methods allowed us to study the interaction of shallow 

flow paths, runoff generation and water source dynamics at the event scale, and to 

present reliable results based on the consensus of all methodologies. 

- Saturation excess surface runoff under the most extreme events and shallow lateral sub-

surface runoff together form the dominant near-surface flow pathways. 

- The conceptualization of baseflow depends on the method used and does not always 

describe the same flow pathways. 

- Geomorphological differences between the two hillslope tributaries resulted in distinct 

hydrochemical signatures with a smaller deep soil water contribution from the steeper 

hillslope. 

- Short-term, intense field measurement campaigns provide an excellent opportunity for a 

deeper understanding of hydrological processes in under-monitored tropical rainforest 

catchments. 
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Figure 1: The regional context of the San Lorencito study catchment with monitored sub-catchment 
tributaries located on hillslopes A and B, automatic weather station in the forest used for this measurement 
campaign (blue circle), soil moisture (blue rectangles) and sampling (black triangles) locations, topography 
and a satellite-derived leaf area index (LAI) map (Dehaspe et al., 2018). The catchment outlet hydrometric 

and chemistry monitoring station is shown with the red triangle. 
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Figure 2: Bi-variate plots (upper row) of conservative tracers and resulting unstructured residual error plots 
of Fe, Ca and K stream chemical parameters (lower row) aiding selection of conservative tracers without 

structure in the residuals. 
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Figure 3: Time series plots of the four-weeks sampling period from 24th May to 18th June 2017 showing a) 
30 min throughfall, air temperature, b) averaged soil moisture at 10 cm and 50 cm depth for each sub-

catchment on hillslope A and B and c) streamflow at the outlet with a digital filter derived baseflow fraction. 
The last panel d) shows the three selected tracer (Ca, K, Fe) concentration time series in streamflow at the 

outlet. 
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Figure 4: EMMA mixing diagram using ordered Eigenvectors and source water contributions (throughfall, 
shallow and deep soils) to the main stream and both sub-catchment tributaries A and B, explaining 84% of 
the total variance. The error bars represent the first standard deviation of measured concentrations. The 

single composite throughfall sample was assigned a standard deviation of one. 
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Figure 5: The EMMA (upper panel) and MixSIAR (lower panel) derived source water contributions to the 
main stream at the outlet, sub-catchment tributary A and B. The boxplots represent the distribution of 
potential source water contributions derived by a Bayesian approach for MixSIAR and a Taylor series 

approximation for EMMA. Throughfall (light blue), shallow (brown) and deep (yellow) soil source waters are 
similarly color coded throughout the paper. The boxes show the median and 25th/75th percentiles with the 

whiskers indicating the 5th/95th percentiles. The crosses point out absolute extreme values. 
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Figure 6: a) EMMA and b) MixSIAR interpolated hydrograph separation time series and source water 
contributions for each of the five events separately assuming time-invariant end-members (same color code 

as in previous plots). 
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Figure 7: The best-fit tritium-based mean transit time (MTT) estimate of baseflow in the San Lorencito 
stream (Qsim_TU) using reconstructed long-term monthly precipitation volumes (NCEP re-analysis product) 

and tritium measurements from nearby IAEA stations (Florida and California) merged with recent rainfall 
measurements in Costa Rica (P_TU) fitted to match the observed tritium in streamflow at the outlet 

(Qobs_TU). 
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